

DT9834 Series User's Manual

	-		
_			
_			
-			
<u>-</u>			
_			

Fifth Edition March, 2006

Copyright © 2004-2006 by Data Translation, Inc.

All rights reserved.

Information furnished by Data Translation, Inc. is believed to be accurate and reliable; however, no responsibility is assumed by Data Translation, Inc. for its use; nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent rights of Data Translation, Inc.

Use, duplication, or disclosure by the United States Government is subject to restrictions as set forth in subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer software clause at 48 C.F.R, 252.227-7013, or in subparagraph (c)(2) of the Commercial computer Software - Registered Rights clause at 48 C.F.R., 52-227-19 as applicable. Data Translation, Inc., 100 Locke Drive, Marlboro, MA 01752

Data Translation® is a registered trademark of Data Translation, Inc. DT-Open Layers™, DataAcq SDK™, DataAcq OMNI CD™, DT-LV Link™, DTx-EZ™, and DT VPI™ are trademarks of Data Translation, Inc.

All other brand and product names are trademarks or registered trademarks of their respective companies.

Data Translation, Inc. 100 Locke Drive Marlboro, MA 01752-1192 (508) 481-3700 www.datatranslation.com Fax: (508) 481-8620

E-mail: info@datx.com

Radio and Television Interference

This equipment has been tested and found to comply with CISPR EN55022 Class A, and EN50082-1 (CE) requirements and also with the limits for a Class A digital device, pursuant to Part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference when the equipment is operated in a commercial environment. This equipment generates, uses, and can radiate radio frequency energy and, if not installed and used in accordance with the instruction manual, may cause harmful interference to radio communications. Operation of this equipment in a residential area is likely to cause harmful interference, in which case the user will be required to correct the interference at his own expense.

Changes or modifications to this equipment not expressly approved by Data Translation could void your authority to operate the equipment under Part 15 of the FCC Rules.

Note: This product was verified to meet FCC requirements under test conditions that included use of shielded cables and connectors between system components. It is important that you use shielded cables and connectors to reduce the possibility of causing interference to radio, television, and other electronic devices.

Canadian Department of Communications Statement

This digital apparatus does not exceed the Class A limits for radio noise emissions from digital apparatus set out in the Radio Interference Regulations of the Canadian Department of Communications.

Le présent appareil numérique n'émet pas de bruits radioélectriques dépassant les limites applicables aux appareils numériques de la class A prescrites dans le Règlement sur le brouillage radioélectrique édicté par le Ministère des Communications du Canada.

Table of Contents

About this Manual	1
Intended Audience	1
How this Manual is Organized	2
Conventions Used in this Manual	3
Related Information	3
Where To Get Help	4
Chapter 1: Overview 15	5
DT9834 Hardware Features	6
Supported Software	0
Accessories	1
Chapter 2: Principles of Operation	3
Analog Input Features	5
Input Resolution	5
Analog Input Channels	6
Specifying a Single Analog Input Channel 27	7
Specifying One or More Analog Input Channels 27	7
Specifying the Digital Input Port in the Analog Input Channel-Gain List	9
Specifying Counter/Timers in the Analog Input Channel-Gain List	0
Performing Dynamic Digital Output Operations 32	2
Input Ranges and Gains	3
Specifying the Gain for a Single Channel 34	4
Specifying the Gain for One or More Channels 34	4
Input Sample Clock Sources	4
Analog Input Conversion Modes	5

Continuous Scan Mode	36
Triggered Scan Mode	37
Internally Retriggered Scan Mode	38
Externally Retriggered Scan Mode 3	39
Input Triggers	1 0
Data Format and Transfer	! 1
Error Conditions	13
Analog Output Features	14
Output Resolution	14
Analog Output Channels4	15
Specifying a Single Analog Output Channel 4	15
Specifying Multiple Analog Output Channels and / or th Digital Output Port4	
Output Ranges and Gains4	17
Output Triggers 4	17
Output Clocks 4	17
Output Conversion Modes	18
Continuously Paced Analog Output4	18
Waveform Generation	50
Data Format and Transfer 5	51
Error Conditions	52
Digital I/O Features	53
Digital I/O Lines5	53
Operation Modes	54
Counter/Timer Features	55
C/T Channels	55
C/T Clock Sources	57
Gate Types	58
Pulse Output Types and Duty Cycles	59
Counter/Timer Operation Modes	50

Event Counting
Up/Down Counting
Frequency Measurement
Edge-to-Edge Measurement
Rate Generation
One-Shot
Repetitive One-Shot
Chapter 3: Supported Device Driver Capabilities 69
Data Flow
Buffering 72
DMA
Triggered Scan Mode
Gain
Synchronous Digital I/O
Channels
Filters
Ranges
Resolution
Triggers
Clocks
Counter/Timers
Miscellaneous
Chapter 4: Programming Flowcharts83
Single-Value Operations
Continuous A/D Operations
Continuous D/A Operations
Continuous Digital Input Operations
Continuous Digital Output Operations
Event Counting Operations 99

Up/Down Counting Operations	95
Frequency Measurement Operations	97
Edge-to-Edge Measurement Operations	99
Pulse Output Operations	101
Simultaneous Operations	103
Chapter 5: Troubleshooting 1	17
General Checklist	118
Technical Support	122
If Your Module Needs Factory Service	123
Chapter 6: Calibration	25
Using the Calibration Utility	127
Calibrating the Analog Input Subsystem	128
Connecting a Precision Voltage Source	128
Using the Auto-Calibration Procedure	128
Using the Manual Calibration Procedure	129
Calibrating the Analog Output Subsystem	131
Appendix A: Specifications1	33
Appendix B: Connector Pin Assignments 1	45
OEM Version Connector Pin Assignments	146
BNC Connection Box Connector Pin Assignments	152
Analog Input Connector	152
Digital I/O Connector	155
Analog Output, Counter/Timer, Clock, and Trigger Connector	157
STP Connection Box Pin Assignments	
Screw Terminal Block TB1	
Screw Terminal Block TB2	
Scrow Terminal Block TB3	

Screw Terminal Block TB4.	
Screw Terminal Block TB5.	
Screw Terminal Block TB6.	
Screw Terminal Block TB7.	
EP353 Accessory Panel Connect	or Pin Assignments 168
Connector J1	
Connector J2	
EP356 Accessory Panel Connect	or Pin Assignments 172
Connector J1	
Connector J2	
EP355 Screw Terminal Assignme	ents
Attached to Connector J2 or	the OEM Module 175
Attached to Connector I3 or	the OEM Module 175

About this Manual

This manual describes the features of the DT9834 Series modules, the capabilities of the DT9834 Series Device Driver, and how to program the DT9834 Series modules using DT-Open Layers™ software. Troubleshooting information is also provided.

Note: The DT9834 Series module is available either installed in a metal BNC connection box, an STP (screw terminal panel) connection box (for the 32-analog input channel version only), or as a board-level OEM version that you can install in your own custom application. If the information in this manual applies to all versions of the DT9834 Series module, the manual uses the product name "DT9834 Series module." Otherwise, the specific product name is mentioned.

Intended Audience

This document is intended for engineers, scientists, technicians, or others responsible for using and/or programming the DT9834 Series modules for data acquisition operations in the Microsoft® Windows® 2000 or Windows XP operating system. It is assumed that you have some familiarity with data acquisition principles and that you understand your application.

How this Manual is Organized

This manual is organized as follows:

- Chapter 1, "Overview," describes the major features of the DT9834 Series module, as well as the supported software and accessories for the modules.
- Chapter 2, "Principles of Operation," describes all of the features
 of the DT9834 Series module and how to use them in your
 application.
- Chapter 3, "Supported Device Driver Capabilities," lists the data acquisition subsystems and the associated features accessible using the DT9834 Series Device Driver.
- Chapter 4, "Programming Flowcharts," describes the processes you must follow to program the subsystems of the DT9834 Series module using DT-Open Layers-compliant software.
- Chapter 5, "Troubleshooting," provides information that you can
 use to resolve problems with the DT9834 Series module and
 device driver, should they occur.
- Chapter 6, "Calibration," describes how to calibrate the analog I/O circuitry of the DT9834 Series modules.
- Appendix A, "Specifications," lists the specifications of the DT9834 Series module.
- Appendix B, "Connector Pin Assignments," shows the pin assignments for the connectors and the screw terminal assignments for the screw terminals on the DT9834 Series module.
- An index completes this manual.

Conventions Used in this Manual

The following conventions are used in this manual:

- Notes provide useful information or information that requires special emphasis, cautions provide information to help you avoid losing data or damaging your equipment, and warnings provide information to help you avoid catastrophic damage to yourself or your equipment.
- Items that you select or type are shown in **bold**.

Related Information

Refer to the following documents for more information on using the DT9834 Series modules:

- Benefits of the Universal Serial Bus for Data Acquisition. This white paper describes why USB is an attractive alternative for data acquisition. It is available on the Data Translation web site (www.datatranslation.com).
- DT9834 Series Getting Started Manual (UM-19983). This manual, included on the Data Acquisition OMNI CD™, describes the how to install the DT9834 Series modules and related software.
- DT Measure Foundry Getting Started Manual (UM-19298) and online help. These documents describe how to use DT Measure Foundry™ to build drag-and-drop test and measurement applications for Data Translation® data acquisition devices without programming.
- DataAcq SDK User's Manual (UM-18326). For programmers who are developing their own application programs using the Microsoft C compiler, this manual describes how to use the DT-Open Layers DataAcq SDK™ to access the capabilities of Data Translation data acquisition devices.

- DTx-EZ Getting Started Manual (UM-15428). This manual describes how to use the ActiveX controls provided in DTx-EZ™ to access the capabilities of Data Translation data acquisition devices in Microsoft Visual Basic® or Visual C++®.
- DT-LV Link Getting Started Manual (UM-15790). This manual describes how to use DT-LV Link™ with the LabVIEW™ graphical programming language to access the capabilities of Data Translation data acquisition devices.
- DAQ Adaptor for MATLAB (UM-22024). This document describes how to use Data Translation's DAQ Adaptor to provide an interface between the MATLAB Data Acquisition subsystem from The MathWorks and Data Translation's DT-Open Layers architecture.
- Microsoft Windows 2000 or Windows XP documentation.
- USB web site (http://www.usb.org).

Where To Get Help

Should you run into problems installing or using a DT9834 Series module, the Data Translation Technical Support Department is available to provide technical assistance. Refer to Chapter 5 for more information. If you are outside the United States or Canada, call your local distributor, whose number is listed on our web site (www.datatranslation.com).

Overview

DT9834 Hardware Features	16
Supported Software	2 0
Accessories	21

DT9834 Hardware Features

The DT9834 Series is a family of high-performance, multifunction data acquisition modules for the USB (Ver. 2.0 or Ver. 1.1) bus. The key hardware features of the DT9834 Series modules are as follows:

- Available either installed in a metal BNC connection box, STP connection box (for the 32-analog input channel version only) or as a board-level OEM version that you can install in your own custom application.
- Simultaneous operation of analog input, analog output, digital I/O, and counter/timer subsystems.
- Analog input subsystem:
 - 12-bit or 16-bit A/D converter. The resolution depends on the model you purchase.
 - Throughput rate up to 500 kSamples/s.
 - Up to 32 single-ended or 16 differential analog input channels.
 The channel type and the number of channels provided depend on the model you purchase. If you do not intend to perform analog input operations, you can also purchase a DT9834 Series module that contains no analog input channels.
 - Programmable gain of 1, 2, 4, or 8 provides input ranges of ± 10 , ± 5 , ± 2.5 , and ± 1.25 V.
 - 1024-location channel-gain list. You can cycle through the channel-gain list using continuous scan mode or triggered scan mode. The maximum sampling rate when using the channel-gain list is 500 kSamples/s.
- Analog output subsystem:
 - Four 12-bit or 16-bit D/A converters. The resolution depends on the model you purchase. If you do not intend to perform analog output operations, you can also purchase a DT9834 Series module that contains no D/A converters.
 - Output rate up to 500 kSamples/s.

- Output range of ±10 V.
- The DACs are deglitched to prevent noise from interfering with the output signal.
- Output channel list. You can cycle through the output channel list using continuous output mode or waveform generation mode. For waveform generation mode, you can simultaneously update all four DACs at 500 kS/s per channel; for continuous output mode, you can simultaneously update all four DACs at 250 kS/s per channel.

• Digital I/O subsystem:

- One digital input port, consisting of 16 digital input lines. You
 can program any of the first eight digital input lines to
 perform interrupt-on-change operations. You can read the
 value of the digital input port using the analog input
 channel-gain list.
- One digital output port, consisting of 16 digital output lines.
 You can output the value of the digital output port using the output channel list.
- An additional dynamic digital output line that changes state whenever an analog input channel is read.
- Five 32-bit counter/timer (C/T) channels that perform event counting, up/down counting, frequency measurement, edge-to-edge measurement, continuous pulse output, one-shot, and repetitive one-shot operations. You can read the value of one or more of the C/T channels using the analog input channel-gain list.
- External or internal clock source.
- Trigger operations using a software command, an analog threshold value, or an external digital trigger.
- 500 V galvanic isolation barrier that prevents ground loops to maximize analog signal integrity and protect your computer.

The key differences among the DT9834 Series modules are summarized in Table 1. Note that all modules provide 16 digital input lines, 16 digital output lines, five counter/timers, and a throughput rate of up to 500 kSamples/s.

OEM packaging refers to the board-level version; the power supply is not included.

Table 1: Summary of DT9834 Series Modules

Module	Analog Inputs	Analog Outputs	Resolution	Packaging
DT9834-00-4-12-OEM	None	4	12 bits	OEM
DT9834-00-4-12-BNC	None	4	12 bits	BNC ^a
DT9834-00-4-16-OEM	None	4	16 bits	OEM
DT9834-00-4-16-BNC	None	4	16 bits	BNC ^a
DT9834-16-0-12-OEM	16 single-ended or 8 differential ^b	0	12 bits	OEM
DT9834-16-0-12-BNC	16 single-ended ^c	0	12 bits	BNC ^d
DT9834-08-0-12-BNC	8 differential	0	12 bits	BNC ^e
DT9834-16-0-16-OEM	16 SE or 8 DI ^b	0	16 bits	OEM
DT9834-16-0-16-BNC	16 single-ended ^c	0	16 bits	BNC ^d
DT9834-08-0-16-BNC	8 differential	0	16 bits	BNC ^e
DT9834-16-4-12-OEM	16 SE or 8 DI ^b	4	12 bits	OEM
DT9834-16-4-12-BNC	16 single-ended ^c	4	12 bits	BNC ^f
DT9834-08-4-12-BNC	8 differential	4	12 bits	BNC ^g
DT9834-16-4-16-OEM	16 SE or 8 DI ^b	4	16 bits	OEM

Analog Module **Analog Inputs Outputs** Resolution **Packaging** BNCf 16 single-ended^c DT9834-16-4-16-BNC 4 16 bits DT9834-08-4-16-BNC 8 differential 4 16 bits BNCg 32 SE or 16 DIh STPⁱ DT9834-32-0-16-STP 0 16 bits 32 SE or 16 DIb 0 **OEM** DT9834-32-0-16-OEM 16 bits

Table 1: Summary of DT9834 Series Modules (cont.)

- a. A BNC connection box with no BNCs for analog inputs, 4 BNCs for analog outputs, 1 BNC for an external DAC clock, and 1 BNC for an external DAC trigger.
- b. Software-selectable.
- c. For single-ended-only BNC modules, you must specify the 16 single-ended channels through software; eight differential channels is the default software configuration.
- d. A BNC connection box with 16 BNCs for single-ended analog inputs, no BNCs for analog outputs, 1 BNC for an external A/D clock, and 1 BNC for an external A/D trigger.
- e. A BNC connection box with 8 BNCs for differential analog inputs, no BNCs for analog outputs, 1 BNC for an external A/D clock, and 1 BNC for an external A/D trigger.
- f. A BNC connection box with 16 BNCs for single-ended analog inputs, 4 BNCs for analog outputs, 1 BNC for an external A/D clock, 1 BNC for an external DAC clock, 1 BNC for an external DAC trigger, and 1 BNC for an external DAC trigger.
- g. A BNC connection box with 8 BNCs for differential analog inputs, 4 BNCs for analog outputs, 1 BNC for an external A/D clock, 1 BNC for an external DAC clock, 1 BNC for an external A/D trigger, and 1 BNC for an external DAC trigger.
- h. You access single-ended channels 16 through 31 through the Analog Input connector on the BNC connection box.
- An STP connection box with screw terminals for connecting up to 32 single-ended or 16 differential analog inputs, 16 digital inputs, 16 digital outputs, 5 counter/timers, an external A/D clock, and an external A/D trigger.

Supported Software

The following software is available for use with the DT9834 Series modules and is on the Data Acquisition OMNI CD:

- DT9834 Series Device Driver The device driver allows you to use a DT9834 Series module with any of the supported software packages or utilities. Refer to the DT9834 Series Getting Started Manual (UM-19983) for more information on loading and configuring the device driver.
- Quick Data Acq application The Quick Data Acq application provides a quick way to get up and running using a DT9834
 Series module. Using this application, you can verify key features of the modules, display data on the screen, and save data to disk.
 Refer to the DT9834 Series Getting Started Manual (UM-19983) for more information on using the Quick Data Acq application.
- DT Measure Foundry An evaluation version of this software is included or provided via a link on the Data Acquisition OMNI CD. DT Measure Foundry is a drag-and-drop test and measurement application builder designed to give you top performance with ease-of-use development. Order the full development version of this software package to develop your own application using real hardware.
- DataAcq SDK Use the DataAcq SDK if you want to develop your own application software for the DT9834 Series modules using the Microsoft C compiler; the DataAcq SDK complies with the DT-Open Layers standard.
- DTx-EZ DTx-EZ provides ActiveX controls, which allow you to access the capabilities of the DT9834 Series modules using Microsoft Visual Basic or Visual C++; DTx-EZ complies with the DT-Open Layers standard.
- DAQ Adaptor for MATLAB Data Translation's DAQ Adaptor provides an interface between the MATLAB Data Acquisition (DAQ) subsystem from The MathWorks and Data Translation's DT-Open Layers architecture.

 DT-LV Link – Use DT-LV Link if you want to use the LabVIEW graphical programming language to access the capabilities of the DT9834 Series modules.

Refer to the Data Translation web site (www.datatranslation.com) for information about selecting the right software package for your needs.

Accessories

You can purchase the following optional items from Data Translation for use with the OEM version of the DT9834 Series module:

- EP361 +5V power supply and cable.
- EP353 Accessory panel that provides one 37-pin, D-sub connector for attaching analog input signals and one 26-pin connector for attaching a 5B Series signal conditioning backplane.
- EP355 Screw terminal panel that provides 14-position screw terminal blocks for attaching analog input, analog output, counter/timer, digital I/O, trigger, and clock signals.
- EP356 Accessory panel that provides two 37-pin, D-sub connectors for attaching digital I/O, analog output, counter/timer, trigger, and clock signals.
- EP333 2-meter shielded cable with two 37-pin connectors that connect an EP356 accessory panel to an STP37 screw terminal panel.
- EP360 2-meter shielded cable with two 37-pin connectors that connect either the Analog Input connector on the BNC connection box or an EP353 accessory panel to an STP37 screw terminal panel.
- STP37 Screw terminal panel that provides 37 screw terminal blocks for attaching analog output, counter/timer, digital I/O, trigger, and clock signals.

- **5B01** 16-channel backplane that accepts 5B Series signal conditioning modules.
- **5B08** 8-channel backplane that accepts 5B Series signal conditioning modules.
- **AC1315** 2-foot, 26-pin female to 26-pin female cable that connects a 5B Series backplane to the DT9834 Series module.

Principles of Operation

Analog Input Features	25
Analog Output Features	44
Digital I/O Features	53
Counter/Timer Features	55

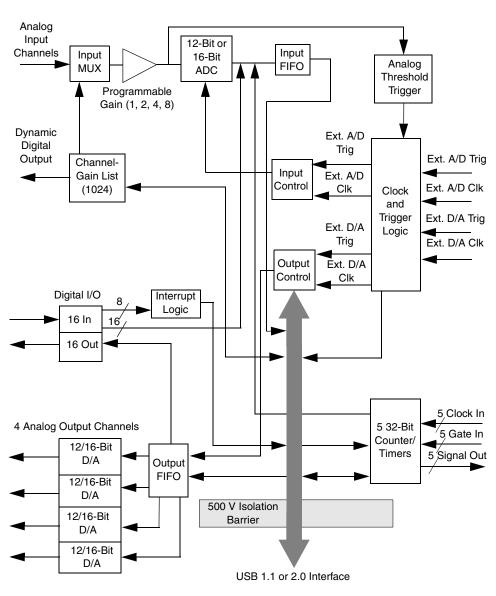


Figure 1 shows a block diagram of the DT9834 Series modules.

Figure 1: Block Diagram of the DT9834 Series Modules

2

Analog Input Features

This section describes the following features of analog input (A/D) operations on the DT9834 Series module:

- Input resolution, described below
- Analog input channels, described on page 26
- Input ranges and gains, described on page 33
- Input sample clock sources, described on page 34
- Analog input conversion modes, described on page 35
- Input triggers, described on page 40
- Data format and transfer, described on page 41
- Error conditions, described on page 43

Input Resolution

Table 2 lists the input resolution of the DT9834 Series modules that support analog input operations. The resolution is fixed at either 12 bits or 16 bits, depending on the module you are using; you cannot specify the resolution in software.

Table 2: Input Resolution

Module	Resolution	Module	Resolution
DT9834-16-0-12-OEM	12 bits	DT9834-16-0-16-OEM	16 bits
DT9834-16-0-12-BNC		DT9834-16-0-16-BNC	
DT9834-08-0-12-BNC DT9834-16-4-12-OEM		DT9834-08-0-16-BNC DT9834-16-4-16-OEM	
DT9834-16-4-12-BNC		DT9834-16-4-16-BNC	
DT9834-08-4-12-BNC		DT9834-08-4-16-BNC	
		DT9834-32-0-16-STP	
		DT9834-32-0-16-OEM	

Analog Input Channels

You can use the analog input channels in one of the following configurations:

- Single-ended –Single-ended channels are useful when you are measuring high-level signals, when noise is not significant, when the source of the input is close to the module, and when all the input signals are referred to the same common ground.
- Pseudo-Differential –Pseudo-differential channels are useful
 when noise or common-mode voltage (the difference between the
 ground potentials of the signal source and the ground of the
 screw terminal panel or between the grounds of other signals)
 exists and when the differential configuration is not suitable for
 your application. This option provides less noise rejection than
 the differential configuration; however, more analog input
 channels are available.
- Differential –Differential channels are useful when you want to measure low-level signals, when noise is a significant part of the signal, or when common-mode voltage exists.

The BNC connection box is shipped in either a differential or single-ended channel configuration. For the STP and OEM versions of the module, you configure the channel type as single-ended or differential through software.

Note: For pseudo-differential inputs, specify single-ended in software; in this case, how you wire these signals determines the configuration.

2

Using the Open Layers Control Panel applet, you can also select whether to use $10 \text{ k}\Omega$ termination resistance between the low side of each differential channel and isolated analog ground. This feature is particularly useful with floating signal sources. Refer to the DT9834 Series Getting Started Manual for more information about wiring to inputs and configuring the driver to use bias return termination resistance.

The DT9834 Series modules can acquire data from a single analog input channel or from a group of analog input channels. Channels are numbered 0 to 31 for single-ended and pseudo-differential inputs, and 0 to 15 for differential inputs.

The following subsections describe how to specify the channels.

Specifying a Single Analog Input Channel

The simplest way to acquire data from a single analog input channel is to specify the channel for a single-value analog input operation using software; refer to page 35 for more information about single-value operations.

You can also specify a single channel using the analog input channel-gain list, described in the next section.

Specifying One or More Analog Input Channels

You can read data from one or more analog input channels using an analog input channel-gain list. You can group the channels in the list sequentially (starting either with 0 or with any other analog input channel) or randomly. You can also specify a single channel or the same channel more than once in the list.

Using software, specify the channels in the order you want to sample them. You can enter up to 1,024 entries in the channel-gain list. The channels are read in order (using continuously paced scan mode or triggered scan mode) from the first entry in the list to the last entry in the list. Refer to page 35 for more information about the supported conversion modes.

You can also use software to set up a channel-inhibit list. This feature is useful if you want to discard acquired values from specific entries in the channel-gain list. Using the channel-inhibit list, you can enable or disable inhibition for each entry in the channel-gain list. If enabled, the value is discarded after the channel is read; if disabled, the value is not discarded after the channel is read.

Notes: If you select an analog input channel as the analog threshold trigger source, the channel used for this trigger source must be the first channel specified in the channel-gain list; refer to page 40 for more information about this trigger source.

The maximum rate at which the module can read the analog input channels depends on the total number of analog input channels and/or counter/timer channels (see page 30) in the list, and whether or not you are reading the digital input port (see the next section). For example, since the maximum throughput of the analog input subsystem is 500 kSamples/s, the module can read two analog input channels at a rate of 250 kSamples/s each or four analog input channels at a rate of 125 kSamples/s each.

2

Specifying the Digital Input Port in the Analog Input Channel-Gain List

The DT9834 Series modules allow you to read the digital input port (all 16 digital input lines) using the analog input channel-gain list. This feature is particularly useful when you want to correlate the timing of analog and digital events.

To read the digital input port, specify channel 16 or channel 32 in the analog input channel-gain list. Use channel 16 for modules with 16 single-ended channels or eight differential channels; use channel 32 for modules with 32 single-ended channels or 16 differential channels. You can enter channel 16 or 32 anywhere in the list, and you can enter it more than once, if desired.

The digital input port is treated like any other channel in the analog input channel-gain list; therefore, all the clocking, triggering, and conversion modes supported for analog input channels are supported for the digital input port, if you specify them this way.

Note: The maximum rate at which the module can read the digital input port depends on the total number of analog input channels (see page 27) and counter/timer channels (see the next section) in the channel-gain list. For example, since the maximum throughput of the analog input subsystem is 500 kSamples/s, the module can read one analog input channel and the digital input port (two channels/ports) at a rate of 250 kSamples/s each or three analog input channels and the digital input port (four channels/ports) at a rate of 125 kSamples/s each.

Specifying Counter/Timers in the Analog Input Channel-Gain List

The DT9834 Series modules allow you to read the value of one or more of the five counter/timer channels using the analog input channel-gain list. This feature is particularly useful when you want to correlate the timing of analog and counter/timer events.

To read a counter/timer channel, specify the appropriate channel number in the analog input channel-gain list (refer to Table 3 on page 30). You can enter a channel number anywhere in the list, and you can enter it more than once, if desired.

You need two channel-gain list entries to read one 32-bit counter value. The first entry stores the lower 16-bit word, and the second entry stores the upper 16-bit word. If you need only the lower 16-bit word, you do not have to include the second entry. The entire 32-bit count value is latched when the lower 16-bit word is stored. This prevents the counter/timer from incrementing between samples.

Table 3 lists the channel number(s) to use for each counter/timer.

Table 3: Using Counter/Timers in Analog Input Channel-Gain List

		Channel to Specify in Channel-Gain List for:	
Counter/Timer Channel	Description	Modules with 16 SE or 8 DI Channels	Modules with 32 SE or 16 DI Channels
C/T_0_LOW	Lower 16 bits (0 to 15) of C/T 0	Channel 17	Channel 33
C/T_0_HI	Upper 16 bits (16 to 31) of C/T 0	Channel 18	Channel 34
C/T_1_LOW	Lower 16 bits (0 to 15) of C/T 1	Channel 19	Channel 35
C/T_1_HI	Upper 16 bits (16 to 31) of C/T 1	Channel 20	Channel 36
C/T_2_LOW	Lower 16 bits (0 to 15) of C/T 2	Channel 21	Channel 37

Table 3: Using Counter/Timers in Analog Input Channel-Gain List (cont.)

		Channel to Specify in Channel-Gain List for:	
Counter/Timer Channel	Description	Modules with 16 SE or 8 DI Channels	Modules with 32 SE or 16 DI Channels
C/T_2_HI	Upper 16 bits (16 to 31) of C/T 2	Channel 22	Channel 38
C/T_3_LOW	Lower 16 bits (0 to 15) of C/T 3	Channel 23	Channel 39
C/T_3_HI	Upper 16 bits (16 to 31) of C/T 3	Channel 24	Channel 40
C/T_4_LOW	Lower 16 bits (0 to 15) of C/T 4	Channel 25	Channel 41
C/T_4_HI	Upper 16 bits (16 to 31) of C/T 4	Channel 26	Channel 42

The counter/timer channel is treated like any other channel in the analog input channel-gain list; therefore, all the clocking, triggering, and conversion modes supported for analog input channels are supported for the counter/timers, if you specify them this way.

Note: The maximum rate at which the module can read the counter/timers depends on the total number of counter/timer channels and analog input channels (see page 27) in the list and whether or not you are reading the digital input port (see page 29). For example, since the maximum throughput of the analog input subsystem is 500 kSamples/s, the module can read one analog input channel and one counter/timer channel (two channels) at a rate of 250 kSamples/s each or three analog input channels and one counter/timer channel (four channels) at a rate of 125 kSamples/s each.

Performing Dynamic Digital Output Operations

Using software, you can enable a synchronous dynamic digital output operation for the analog input subsystem. This feature is particularly useful when you want to synchronize and control external equipment.

One dynamic digital output line is accessible through hardware. This line is set to a value of 0 on power up; a reset does not affect the value of the dynamic digital output line. Note that this line is provided in addition to the other 16 digital output lines; see page 53 for more information about the digital I/O features.

You specify the value (0 or 1) to write from the dynamic digital output line using the analog input channel-gain list. A value of 0 indicates a low-level signal; a value of 1 indicates a high-level signal.

As each entry in the channel-gain list is read, the corresponding value is output to the dynamic digital output line. For example, assume that dynamic digital output operations are enabled; that the channel-gain list contains analog input channels 0, 1, 2, and 3; and that the channel-gain list contains the dynamic digital output values 1, 0, 0, 1. Figure 2 shows this configuration.

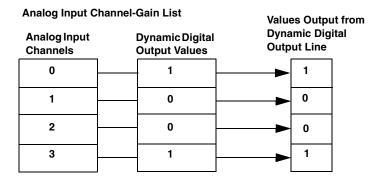


Figure 2: Example Using Dynamic Digital Outputs

9

As analog input channel 0 is read, a high-level signal is output to the dynamic digital output line. As analog input channels 1 and 2 are read, a low-level signal is output to the dynamic digital output line. As analog input channel 3 is read, a high-level signal is output to the dynamic digital output line.

Input Ranges and Gains

Table 4 lists the supported gains and effective bipolar input ranges for each.

Table 4: Effective Input Range

Gain	Input Range
1	±10 V
2	±5 V
4	±2.5 V
8	±1.25 V

Using software, specify a range of $40~\rm V$ to $+10~\rm V$. Note that this is the range for the entire analog input subsystem, not the range per channel.

For each channel, choose the gain that has the smallest effective range that includes the signal you want to measure. For example, if the range of your analog input signal is ± 1.05 V, specify a range of ± 1.00 V to ± 1.00 V for the module and use a gain of 8 for the channel; the effective input range for this channel is then ± 1.25 V, which provides the best sampling accuracy for that channel.

The way you specify gain depends on how you specified the channels, as described in the following subsections.

Specifying the Gain for a Single Channel

The simplest way to specify gain for a single channel is to specify the gain for a single-value analog input operation using software; refer to page 35 for more information about single-value operations.

You can also specify the gain for a single channel using an analog input channel-gain list, described in the next section.

Specifying the Gain for One or More Channels

You can specify the gain for one or more analog input channels using an analog input channel-gain list. Using software, set up the channel-gain list by specifying the gain for each entry in the list.

For example, assume the analog input channel-gain list contains three entries: channels 5, 6, and 7 and gains 2, 4, and 1. A gain of 2 is applied to channel 5, a gain of 4 is applied to channel 6, and a gain of 1 is applied to channel 7.

Note: For channel 16 or 32 (the digital input port) and channels 17 through 26 or channels 33 through 42 (the counter/timer channels), specify a gain of 1.

Input Sample Clock Sources

DT9834 Series modules allow you to use one of the following clock sources to pace analog input operations:

 Internal A/D clock – Using software, specify the clock source as internal and the clock frequency at which to pace the operation. The minimum frequency supported is 0.75 Samples/s; the maximum frequency supported is 500 kSamples/s.

2

According to sampling theory (Nyquist Theorem), specify a frequency that is at least twice as fast as the input's highest frequency component. For example, to accurately sample a 20 kHz signal, specify a sampling frequency of at least 40 kHz. Doing so avoids an error condition called *aliasing*, in which high frequency input components erroneously appear as lower frequencies after sampling.

• External A/D clock – An external A/D clock is useful when you want to pace acquisitions at rates not available with the internal A/D clock or when you want to pace at uneven intervals.

Connect an external A/D clock to the External ADC Clock input signal on the DT9834 Series module. Conversions start on the falling edge of the external A/D clock input signal.

Using software, specify the clock source as external. The clock frequency is always equal to the frequency of the external A/D sample clock input signal that you connect to the module.

Note: If you specify channel 16 or 32 (the digital input port) and/or channels 17 through 26 or channels 33 through 42 (the counter/timer channels) in the channel-gain list, the input sample clock (internal or external) also paces the acquisition of the digital input port and/or counter/timer channels.

Analog Input Conversion Modes

DT9834 Series modules support the following conversion modes:

Single-value operations are the simplest to use. Using software, you specify the range, gain, and analog input channel. The module acquires the data from the specified channel and returns the data immediately. For a single-value operation, you cannot specify a clock source, trigger source, scan mode, or buffer.

Single-value operations stop automatically when finished; you cannot stop a single-value operation.

Scan mode takes full advantage of the capabilities of the DT9834
 Series modules. For a scan, you can specify a channel-gain list, clock source, trigger source, scan mode, buffer, and buffer wrap mode using software. Two scan modes are supported: continuous scan mode and triggered scan mode (often called burst mode). These modes are described in the following subsections.

Using software, you can stop a scan by performing either an orderly stop or an abrupt stop. In an orderly stop, the module finishes acquiring the data, stops all subsequent acquisition, and transfers the acquired data to host memory; any subsequent triggers are ignored.

In an abrupt stop, the module stops acquiring samples immediately; the acquired data is not transferred to host memory, and any subsequent triggers are ignored.

Continuous Scan Mode

Use continuous scan mode if you want to accurately control the period between conversions of individual channels in a scan.

When it detects an initial trigger, the module cycles through the channel-gain list, acquiring and converting the value for each entry in the list (this process is defined as the scan). The module then wraps to the start of the channel-gain list and repeats the process continuously until either the allocated buffers are filled or until you stop the operation. Refer to page 41 for more information about buffers.

The conversion rate is determined by the frequency of the input sample clock; refer to page 34 for more information about the input sample clock. The sample rate, which is the rate at which a single entry in the channel-gain list is sampled, is determined by the frequency of the input sample clock divided by the number of entries in the channel-gain list.

To select continuous scan mode, use software to specify the data flow as continuous and to specify the initial trigger (the trigger source that starts the operation). You can select a software trigger, an external TTL trigger, or an analog threshold trigger as the initial trigger. Refer to page 40 for more information about the supported trigger sources.

Figure 3 illustrates continuous scan mode using a channel-gain list with three entries: channel 0, channel 1, and channel 2. In this example, analog input data is acquired on each clock pulse of the input sample clock. When it reaches the end of the channel-gain list, the module wraps to the beginning of the channel-gain list and repeats this process. Data is acquired continuously.

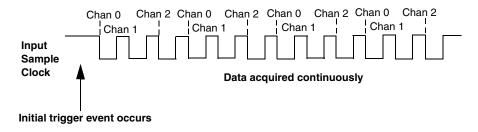


Figure 3: Continuous Scan Mode

Triggered Scan Mode

Use triggered scan mode if you want to accurately control both the period between conversions of individual channels in a scan and the period between each scan. This mode is useful in emulating simultaneous sample-and-hold and trigger-per-buffer operations. You can acquire up to 262,144 samples per trigger (256 times per trigger x 1024-location channel-gain list).

DT9834 Series modules support two triggered scan modes: internally retriggered and externally retriggered. These modes are described in the following subsections.

Internally Retriggered Scan Mode

In internally retriggered scan mode, the module waits for the initial trigger to occur. When it detects an initial trigger, the module scans the analog input channel-gain list a specified number of times (up to 256), and then waits for an internal retrigger to occur. When it detects an internal retrigger, the module scans the channel-gain list the specified number of times, and then waits for another internal retrigger to occur. The process repeats continuously until either the allocated buffers are filled or you stop the operation; refer to page 41 for more information about buffers.

The sample rate is determined by the frequency of the input sample clock divided by the number of entries in the channel-gain list; refer to page 34 for more information about the input sample clock. The conversion rate of each scan is determined by the frequency of the internal retrigger clock. The minimum frequency supported is 0.75 Samples/s; the maximum frequency supported is 500 kSamples/s.

Specify the retrigger frequency as follows:

Min. Retrigger =
$$\#$$
 of CGL entries $x \#$ of CGLs per trigger + 2 μ s

Period A/D sample clock frequency

Max. Retrigger = $\frac{1}{\text{Min. Retrigger Period}}$

For example, if you are using 512 channels in the channel-gain list, scanning the channel-gain list 256 times every trigger or retrigger, and using an A/D sample clock with a frequency of 100 kHz, set the maximum retrigger frequency to 0.762 Hz, since

$$0.762 \text{ Hz} = \frac{1}{(512 * 256)} + 2 \text{ µs}$$
 100 kHz

To select internally retriggered scan mode, use software to specify the following parameters:

- Dataflow as continuous
- · Triggered scan mode usage enabled
- The initial trigger (the trigger source that starts the acquisition)
- Retrigger mode as internal
- The number of times to scan per trigger or retrigger (also called the multiscan count)
- The frequency of the retrigger clock

Externally Retriggered Scan Mode

In externally retriggered scan mode, the module waits for the initial trigger to occur. When it detects an initial trigger, the module scans the channel-gain list up to 256 times, and then waits for an external retrigger to occur.

When the retrigger occurs, the module scans the channel-gain list the specified number of times, and then waits for another external digital (TTL) trigger to occur. The process repeats continuously until either the allocated buffers are filled or you stop the operation; refer to page 41 for more information about buffers.

The conversion rate of each channel is determined by the frequency of the input sample clock; refer to page 34 for more information about the input sample clock. The conversion rate of each scan is determined by the period between external retriggers; therefore, it cannot be accurately controlled. The module ignores external triggers that occur while it is acquiring data. Only external retrigger events that occur when the module is waiting for a retrigger are detected and acted on.

To select externally retriggered scan mode, use software to specify the following parameters:

- Dataflow as continuous
- Triggered scan mode enabled
- The initial trigger (the trigger source that starts the operation) as any of the supported trigger sources
- Retrigger mode as an external retrigger (retrigger extra)
- The number of times to scan per trigger or retrigger (also called the multiscan count)
- The retrigger source as the external digital (TTL) trigger

Note: If you want to use the external digital (TTL) trigger source as both the initial trigger and the retrigger source, specify the retrigger mode as scan-per-trigger. In this case, you do not have to specify the retrigger source.

Input Triggers

A trigger is an event that occurs based on a specified set of conditions. Acquisition starts when the module detects the initial trigger event and stops when the specified number of samples has been acquired (if the buffer wrap mode is none, described on page 42), or when you stop the operation. Note that when you stop the operation, the module finishes reading the channel-gain list.

If you are using triggered scan mode, the module continues to acquire data using the specified retrigger source to clock the operation. Refer to page 37 for more information about triggered scan mode.

The DT9834 Series module supports the following trigger sources:

- **Software trigger** –A software trigger event occurs when you start the analog input operation (the computer issues a write to the module to begin conversions). Using software, specify the trigger source as a software trigger.
- External digital (TTL) trigger –An external digital (TTL) trigger event occurs when the DT9834 Series module detects a transition (high-to-low or low-to-high) on the External ADC Trigger input signal connected to the module. Using software, specify the trigger source as a rising-edge external digital trigger (external) or a falling-edge external digital trigger (extra).
- Analog threshold trigger An analog threshold trigger event occurs when the signal on the first channel in the analog input channel-gain list rises above (low-to-high transition) a programmable threshold level. Using software, specify the trigger source as a positive threshold trigger (threshpos).

You can use any one of the 16 analog input channels as the analog trigger. The analog trigger channel must be the first entry in the analog input channel-gain list.

You specify the threshold level in the **olDaPutSingleValue** function, using D/A subsystem 1. Specify a value between 0 and 255, where 0 equals 0 V and 255 equals +10 V.

Data Format and Transfer

DT9834 Series modules use offset binary data encoding, such as 000 (for 12-bit modules) or 0000 (for 16-bit modules) to represent negative full-scale, and FFFh (for 12-bit modules) or FFFFh (for 16-bit modules) to represent positive full-scale. Use software to specify the data encoding as binary.

The ADC outputs FFFh (for 12-bit modules) or FFFFh (for 16-bit modules) for above-range signals, and 000 (for 12-bit modules) or 0000 (for 16-bit modules) for below-range signals.

Before you begin acquiring data, you must allocate buffers to hold the data. A Buffer Done message is returned whenever a buffer is filled. This allows you to move and/or process the data as needed.

Note: We recommend that you allocate buffers of 1024 samples or more to optimize the performance of your DT9834 Series module. If you allocate smaller buffers, the software automatically adjusts the buffer size to 256 samples/buffer, 512 samples/buffer, or 768 samples/buffer, whichever is closest. The rate at which Buffer Done messages are returned depends on the buffer size.

We recommend that you allocate a minimum of three buffers for analog input operations, specifying one of the following buffer wrap modes in software:

- None Data is written to multiple allocated input buffers continuously; when no more empty buffers are available, the operation stops. If wrap mode is none, the module guarantees gap-free data.
- Multiple Data is written to multiple allocated input buffers
 continuously; if no more empty buffers are available, the module
 overwrites the data in the current buffer, starting with the first
 location in the buffer. This process continues indefinitely until
 you stop it. If wrap mode is multiple, the module does not
 guarantee gap-free data.

Error Conditions

The DT9834 Series modules can report an error if one of the following conditions occurs:

- A/D Over Sample The A/D sample clock rate is too fast. This
 error is reported if a new A/D sample clock pulse occurs while
 the ADC is busy performing a conversion from the previous A/D
 sample clock pulse. The host computer can clear this error. To
 avoid this error, use a slower sampling rate.
- Input FIFO Overflow The analog input data is not being transferred fast enough to the host computer. The host computer can clear this error, but the error will continue to be generated if the Input FIFO is still full. To avoid this error, close other applications that may be running while you are acquiring data. If this has no effect, try using a computer with a faster processor or reduce the sampling rate.

If one of these error conditions occurs, the module stops acquiring and transferring data to the host computer.

Analog Output Features

This section describes the following features of analog output operations:

- Output resolution, described below
- Analog output channels, described on page 45
- Output ranges and gains, described on page 47
- Output triggers, described on page 47
- Output clocks, described on page 47
- Data format and transfer, described on page 51
- Error conditions, described on page 52

Output Resolution

Table 2 lists the output resolution of the DT9834 Series modules that support analog output operations. The resolution is fixed at either 12 bits or 16 bits, depending on the module you are using; you cannot specify the resolution in software.

Table 5: Output Resolution

Module	Resolution	Module	Resolution
DT9834-00-4-12-OEM DT9834-00-4-12-BNC DT9834-16-4-12-OEM DT9834-16-4-12-BNC DT9834-08-4-12-BNC	12 bits	DT9834-00-4-16-OEM DT9834-00-4-16-BNC DT9834-16-4-16-OEM DT9834-16-4-16-BNC DT9834-08-4-16-BNC	16 bits

Analog Output Channels

The DT9834 Series modules support four DC-level analog output channels (DAC0, DAC1, DAC2, and DAC3). Refer to the *DT9834* Series Getting Started Manual for information about how to wire analog output signals to the module.

The DACs are deglitched to prevent noise from interfering with the output signal. They power up to a value of 0 V ± 10 mV. Unplugging the module resets the DACs to 0 V.

The DT9834 Series modules can output data from a single DAC or sequentially from one or more DACs and/or the digital output port. The following subsections describe how to specify the DACs/port.

Specifying a Single Analog Output Channel

The simplest way to output data from a single DAC is to specify the channel for a single-value analog output operation using software; refer to page 48 for more information about single-value operations.

You can also specify a single DAC using the output channel list, described in the next section.

Specifying Multiple Analog Output Channels and/or the Digital Output Port

You can output data from one or more DACs and/or the digital output port using the output channel list. This feature is particularly useful when you want to correlate the timing of analog and digital output events.

Using software, specify the data flow mode as continuous for the D/A subsystem (described on page 48) and specify the output channels you want to update, where 0 is DAC0, 1 is DAC1, 2 is DAC2, 3 is DAC3, and 4 is the digital output port. You can enter a maximum of 5 entries in the output channel list and the channels must be in order. Note that you can skip a channel in the list, however, if you do not want to update it. For example, if you want to update only DAC3 and the digital output port, specify channels 3 and 4 in the output channel list. If you want to update all the DACs and the digital output ports, specify channels 0, 1, 2, 3, and 4 in the output channel list. The channels are output in order from the first entry in the list to the last entry in the list.

The amount of data that you can output for each channel depends on how many channels are in the output channel list. For example, if only one channel is entered in the output channel list, you can output up to 128K values; if all five channels are entered in the output channel list, you an output up to 24K values per channel.

Notes: The maximum rate at which the module can update the output channels depends on the total number of channels in the output channel list. Since the maximum throughput for each output channel is 500 kSamples/s, the module can update two output channels at a rate of 1000 kSamples/s or all five output channels at a rate of 2.5 MSamples/s.

The digital output port is treated like any other channel in the output channel list; therefore, all the clocking, triggering, and conversion modes supported for analog output channels are supported for the digital output port, if you specify the digital output port in the output channel list.

Output Ranges and Gains

Each DAC on the DT9834 Series module can output bipolar analog output signals in the range of ± 10 V.

Through software, specify the range for the entire analog output subsystem as -10 V to +10 V, and the gain for each DAC as 1.

Output Triggers

A trigger is an event that occurs based on a specified set of conditions. The DT9834 Series modules support the following output trigger sources:

- **Software trigger** A software trigger event occurs when you start the analog output operation. Using software, specify the trigger source as a software trigger.
- External digital (TTL) trigger An external digital (TTL) trigger event occurs when the DT9834 Series module detects a transition (high-to-low or low-to-high) on the External DAC Trigger input signal connected to the module. Using software, specify the trigger source as external and the polarity as high-to-low transition or low-to-high transition.

Output Clocks

DT9834 Series modules allow you to use one of the following clock sources to pace analog output operations:

- Internal DAC clock Using software, specify the clock source as internal and the clock frequency at which to pace the operation. The minimum frequency supported is 0.75 Samples/s; the maximum frequency supported is 500 kSamples/s.
- External DAC clock An external DAC clock is useful when you want to pace conversions at rates not available with the output sample clock or when you want to pace at uneven intervals.

Connect an external DAC clock to the External DAC Clock input signal on the DT9834 Series module. Analog output operations start on the rising edge of the external DAC clock output signal.

Using software, specify the clock source as external. The clock frequency is always equal to the frequency of the external DAC clock output signal that you connect to the module.

Output Conversion Modes

DT9834 Series modules support the following conversion modes:

- Single-value operations are the simplest to use but offer the least flexibility and efficiency. Use software to specify the analog output channel that you want to update, and the value to output from that channel. For a single-value operation, you cannot specify a clock source, trigger source, or buffer. Single-value operations stop automatically when finished; you cannot stop a single-value operation.
- Continuous analog output operations take full advantage of the capabilities of the DT9834 Series modules. In this mode, you can specify an output channel list, clock source, trigger source, buffer, and buffer wrap mode. Two continuous analog output modes are supported: continuously paced and waveform generation mode. These modes are described in the following subsections.

Note that in waveform mode, each channel in the output channel list must write the same number of values, use the same output clock (refer to page 47), and use the same output trigger (refer to page 47).

Continuously Paced Analog Output

Use continuously paced analog output mode if you want to accurately control the period between conversions of individual channels in the output channel list (refer to page 45 for information on specifying the output channel list).

D

Use software to fill the output buffer with the values that you want to write to the DACs and to the digital output port, if applicable. For example, if your output channel list contains only DAC0 and the digital output port, specify the values in the output buffer as follows: the first output value for DAC0, the first output value for the digital output port, the second output value for DAC0, the second output value for the digital output port, and so on.

When it detects a trigger, the module starts writing the values from the output buffer to the channels specified in the output channel list. The operation repeats continuously until either all the data is output from the buffers (if buffer wrap mode is none) or you stop the operation (if buffer wrap mode is multiple). Refer to page 51 for more information about buffer modes.

Make sure that the host computer transfers data to the output channel list fast enough so that the list does not empty completely; otherwise, an underrun error results.

To select continuously paced analog output mode, use software to specify the data flow as continuous, the buffer wrap mode as multiple or none, and the trigger source as any of the supported trigger sources. Refer to page 47 for more information about the supported trigger sources.

To stop a continuously paced analog output operation, you can stop sending data to the module, letting the module stop when it runs out of data, or you can perform either an orderly stop or an abrupt stop using software. In an orderly stop, the module finishes outputting the specified number of samples, and then stops; all subsequent triggers are ignored. In an abrupt stop, the module stops outputting samples immediately; all subsequent triggers are ignored.

Waveform Generation

Use waveform generation mode if you want to output a waveform repetitively.

The waveform pattern can range from 2 to 120K (122,880) samples if you specify one output channel, 2 to 60K (61,440) samples for two output channels, 2 to 40K (40,960) samples for three output channels, 2 to 30K (30,720) samples for four output channels, or 2 to 24K (24,576) samples for five output channels.

Note: The waveform pattern size must be the same for all output channels, and the total number of samples must be a multiple of the total number of output channels.

Use software to fill the output buffer with the values that you want to write to the channels in the output channel list. For example, if your output channel list contains only DAC0 and the digital output port, specify the values in the output buffer as follows: the first output value for DAC0, the first output value for the digital output port, the second output value for DAC0, the second output value for the digital output port, and so on.

When it detects a trigger, the host computer transfers the entire waveform pattern to the module, and the module starts writing output values to the output channels, as determined by the output channel list. Use software to allocate the memory and specify the waveform pattern.

To select waveform generation mode, use software to specify the data flow as continuous, the buffer wrap mode as single (refer to page 52), and the trigger source as any of the supported trigger sources (refer to page 47).

Data Format and Transfer

Data from the host computer must use offset binary data encoding for analog output signals, such as 000 (for 12-bit modules) or 0000 (for 16-bit modules) to represent -10 V, and FFFh (for 12-bit modules) or FFFFh (for 16-bit modules) to represent +10 V. Using software, specify the data encoding as binary.

Before you begin writing data to the output channels, you must allocate and fill buffers with the appropriate data. A Buffer Done message is returned whenever a buffer is output. This allows you to output additional data as needed.

Note: Allocate buffers of 1024 samples or more to optimize the performance of your DT9834 Series module. If you allocate smaller buffers, the software automatically adjusts the buffer size to 256 samples/buffer, 512 samples/buffer, or 768 samples/buffer, whichever is closest. The rate at which Buffer Done messages are returned depends on the buffer size.

Specify one of the following buffer wrap modes in software:

- None –Data is written from multiple output buffers continuously; when no more buffers of data are available, the operation stops. If wrap mode is none, the module guarantees gap-free data; however, the data written may not be what you expect.
- Multiple –Data is written from multiple output buffers
 continuously; when no more buffers of data are available, the
 module returns to the first location of the current buffer and
 continues writing data. This process continues indefinitely until
 you stop it. If wrap mode is multiple, the module does not
 guarantee gap-free data.

• **Single** –Data is written from a single output buffer continuously; when all the data in the buffer is written, the module returns to the first location of the buffer and continues writing data. This process continues indefinitely until you stop it.

If wrap mode is single and the allocated output buffer is equal to or less than the size of the FIFO on the module, the data is written once to the module. The module recycles the data, allowing you to output the same pattern continuously without having to reload the data from the output channel list.

Note: If the size of your buffers is less than 128K and you stop the analog output operation, the operation stops after the current buffer and the next buffer have been output.

Error Conditions

The DT9834 Series modules can report an error if one of the following conditions occurs:

- Output FIFO Underflow The output channel list data is not being sent from the host fast enough. This error is reported if an output sample clock pulse occurs while the output channel list is empty. Note that if no new data is available to be output by either the DACs or the digital output port, the last value placed in the output channel list continues to be output by the DACs/port. You can ignore this error when performing a single-value operation.
- DAC Over Sample error The output sample clock rate is too fast. This error is reported if a new output sample clock occurs while the module is busy loading the next values from the output channel list into the DACs and/or digital output port. To avoid this error, try slowing down the D/A clock, using a different wrap mode, increasing the buffer sizes, or using more buffers.

Digital I/O Features

This section describes the following features of digital I/O operations:

- Digital I/O lines, described below
- Operation modes, described on page 54

Digital I/O Lines

DT9834 Series modules support one digital input port, consisting of 16 digital input lines (lines 0 to 15) and one digital output port, consisting of 16 digital output lines (lines 0 to 15).

You can specify the digital I/O line that you want to read or write in a single-value digital I/O operation. Refer to page 54 for more information about single-value operations.

In addition, you can specify the entire digital input port in an analog input channel-gain list to perform a continuous digital input operation, or you can specify the entire digital output port in an output channel list to perform a continuous digital output operation. Refer to page 54 for more information about continuous digital I/O operations.

A digital line is high if its value is 1; a digital line is low if its value is 0. On power up or reset, a low value (0) is output from each of the digital output lines.

The DT9834 Series modules allow you to program the first eight digital input lines to perform interrupt-on-change operations. Refer to page 54 for more information.

The DT9834 Series modules provide a dynamic digital output line that you can update whenever an analog input channel is read. The dynamic digital output line is in addition to the 16 digital output lines. Refer to page 55 for more information.

Operation Modes

The DT9834 Series modules support the following digital I/O operation modes:

- Single-value operations are the simplest to use but offer the least flexibility and efficiency. You use software to specify the digital I/O port and a gain of 1 (the gain is ignored). Data is then read from or written to all the digital I/O lines. For a single-value operation, you cannot specify a clock or trigger source.
 - Single-value operations stop automatically when finished; you cannot stop a single-value operation.
- Continuous digital I/O takes full advantage of the capabilities of the DT9834 Series modules. You can specify a clock source, scan mode, trigger source, buffer, and buffer wrap mode for the operation.
 - Digital input For digital input operations, enter the digital input port (all 16 digital input lines) as channel 16 or 32 in the analog input channel-gain list; refer to page 29 for more information. The input sample clock (internal or external) paces the reading of the digital input port (as well as the acquisition of the analog input and counter/timer channels); refer to page 34 for more information.
 - Digital output For digital output operations, enter the digital output port (all 16 digital output lines) as channel 4 in the output channel list; refer to page 45 for more information. The output clock (internal or external) paces the update of the digital output port (as well as the update of the analog output channels); refer to page 47 for more information.
- Interrupt-on-change operations You can use the Open Layers Control Panel applet to select any of the first eight digital input lines to perform interrupt-on-change operations. When any one of the specified bits changes state, the module reads the entire 16-bit digital input value and generates an interrupt.

• **Dynamic digital output** is useful for synchronizing and controlling external equipment and allows you to output data to the dynamic digital output line each time an analog input value is acquired. This mode is programmed through the analog input subsystem; refer to page 32 for more information.

Counter/Timer Features

This section describes the following features of counter/timer (C/T) operations:

- C/T channels, described below
- C/T clock sources, described on page 57
- Gate types, described on page 58
- Pulse types and duty cycles, described on page 59
- C/T operation modes, described on page 60

C/T Channels

The DT9834 Series modules provide five 32-bit counter/timers. The counters are numbered 0, 1, 2, 3, and 4. Each counter accepts a clock input signal and gate input signal and outputs a pulse (pulse output signal), as shown in Figure 4.

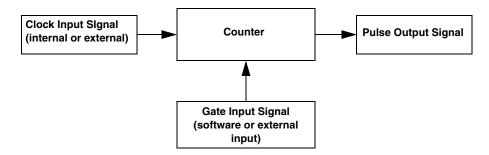


Figure 4: Counter/Timer Channel

To specify the counter/timer to use in software, specify the appropriate C/T subsystem. For example, counter/timer 0 corresponds to C/T subsystem element 0; counter/timer 3 corresponds to C/T subsystem element 3.

Using software, you can also specify one or more of the counter/timers in the analog input channel-gain list. You need two channel-gain list entries to read a 32-bit counter value. The first entry stores the lower 16-bit word, and the second entry stores the upper 16-bit word.

If you need only the lower 16-bit word, you do not have to include the second entry. The entire 32-bit count value is latched when the lower 16-bit word is stored. This prevents the counter/timer from incrementing between samples. Refer to page 30 for more information about using C/Ts in the channel-gain list.

C/T Clock Sources

The following clock sources are available for the counter/timers:

- Internal C/T clock The internal C/T clock always uses an 18 MHz time base. Through software, specify the clock source as internal, and specify the frequency at which to pace the operation (this is the frequency of the Counter *n* Out signal).
- External C/T clock An external C/T clock is useful when you want to pace counter/timer operations at rates not available with the internal C/T clock or if you want to pace at uneven intervals. The frequency of the external C/T clock can range from .004 Hz to 9 MHz.

Connect the external clock to the Counter n Clock input signal on the DT9834 Series module. Counter/timer operations start on the rising edge of the clock input signal.

Using software, specify the clock source as external and specify a clock divider between 2 and 2,147,483,647.

Note: The external C/T clock (the clock connected to the Counter n Clock input signal) determines how often you want to count events, measure frequency, or measure the time interval between edges.

If you specify a counter/timer in the analog input channel-gain list, the external A/D clock (the clock connected to the External ADC Clock input signal) determines how often you want to read the counter value. Refer to page 34 for more information about the external A/D clock.

Gate Types

The edge or level of the Counter n Gate signal determines when a counter/timer operation is enabled. DT9834 Series modules provide the following gate types:

- None –A software command enables any counter/timer operation immediately after execution.
- Logic-low level external gate input –Enables a counter/timer operation when the Counter n Gate signal is low, and disables the counter/timer operation when the Counter n Gate signal is high. Note that this gate type is used for event counting and rate generation modes; refer to page 60 for more information about these modes.
- Logic-high level external gate input –Enables a counter/timer operation when the Counter n Gate signal is high, and disables a counter/timer operation when the Counter n Gate signal is low. Note that this gate type is used for event counting and rate generation modes; refer to page 60 for more information about these modes.
- Falling-edge external gate input –Enables a counter/timer operation when a high-to-low transition is detected on the Counter *n* Gate signal. In software, this is called a low-edge gate type. Note that this gate type is used for edge-to-edge measurement, one-shot, and repetitive one-shot mode; refer to page 60 for more information about these modes.
- **Rising-edge external gate input** –Enables a counter/timer operation when a low-to-high transition is detected on the Counter *n* Gate signal. In software, this is called a high-edge gate type. Note that this gate type is used for edge-to-edge measurement, one-shot, and repetitive one-shot mode; refer to page 60 for more information about these modes.

Specify the gate type in software.

Pulse Output Types and Duty Cycles

The DT9834 Series modules can output the following types of pulses from each counter/timer:

- **High-to-low transitions** The low portion of the total pulse output period is the active portion of the counter/timer clock output signal.
- Low-to-high transitions The high portion of the total pulse output period is the active portion of the counter/timer pulse output signal.

You specify the pulse output type in software.

The duty cycle (or pulse width) indicates the percentage of the total pulse output period that is active. For example, a duty cycle of 50 indicates that half of the total pulse output is low and half of the total pulse output is high. You specify the duty cycle in software.

Figure 5 illustrates a low-to-high pulse with a duty cycle of approximately 30%.

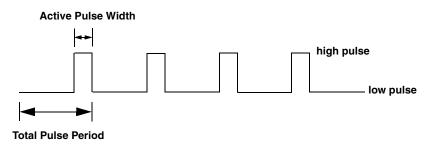


Figure 5: Example of a Low-to-High Pulse Output Type

Counter/Timer Operation Modes

DT9834 Series modules support the following counter/timer operation modes:

- Event counting
- Up/down counting
- Frequency measurement
- Edge-to-edge measurement
- Rate generation
- One-shot
- Repetitive one-shot

Note: The active polarity for each counter/timer operation mode is software-selectable.

The following subsections describe these modes in more detail.

Event Counting

Use event counting mode if you want to count the number of rising edges that occur on the Counter n Clock input when the Counter n Gate signal is active (low-level or high-level). Refer to page 58 for information about specifying the active gate type.

You can count a maximum of 4,294,967,296 events before the counter rolls over to 0 and starts counting again.

Using software, specify the counter/timer mode as event counting (count), the C/T clock source as external, and the active gate type as low-level or high-level.

Make sure that the signals are wired appropriately. Refer to the *DT9834 Getting Started Manual* for an example of connecting an event counting application.

Up/Down Counting

Use up/down counting mode if you want to increment or decrement the number of rising edges that occur on the Counter n Clock input, depending on the level of the Counter n Gate signal.

If the Counter n Gate signal is high, the C/T increments; if the specified gate signal is low, the C/T decrements.

Using software, specify the counter/timer mode as up/down counting (up/down), and the C/T clock source as external. Note that you do not specify the gate type in software.

Make sure that the signals are wired appropriately. Refer to the *DT9834 Getting Started Manual* for an example of connecting an up/down counting application.

Note: Initialize the counter/timer so that the C/T never increments above FFFFFFFF or decrements below 0.

Frequency Measurement

Use frequency measurement mode if you want to measure the number of rising edges that occur on the Counter n Clock input over a specified duration.

Using software, specify the counter/timer mode as frequency measurement (count) or event counting (count), the clock source as external, and the time over which to measure the frequency.

You can use the Windows timer (which uses a resolution of 1 ms), or if you need more accuracy than the Windows timer provides, you can connect a pulse of a known duration (such as a one-shot output of another user counter) to the Counter n Gate input signal.

If you use a known pulse, use software to set up the counter/timers as follows:

- Set up one of the counter/timers for one-shot mode, specifying
 the clock source as internal, the clock frequency, the gate type
 that enables the operation as rising edge or falling edge, the
 polarity of the output pulse as high-to-low transition or
 low-to-high transition, the pulse width, and the duty cycle of the
 output pulse.
- 2. Set up the counter/timer that will measure the frequency for event counting mode, specifying the type of clock pulses to count and the gate type (this should match the pulse output type of the counter/timer set up for one-shot mode).
- **3.** Start both counters (pulses are not counted until the active period of the one-shot pulse is generated).
- **4.** Read the number of pulses counted. (Allow enough time to ensure that the active period of the one-shot occurred and that events have been counted.)
- **5.** Determine the measurement period using the following equation:

6. Determine the frequency of the clock input signal using the following equation:

Make sure that the signals are wired appropriately. One way to wire a frequency measurement operation is to use the same wiring as an

event counting application, but not use an external gate signal. Refer to the *DT9834 Getting Started Manual* for an example of connecting a frequency measurement application.

Edge-to-Edge Measurement

Use edge-to-edge measurement mode if you want to measure the time interval between a specified start edge and a specified stop edge.

The start edge and the stop edge can occur on the rising edge of the Counter n Gate input, the falling edge of the Counter n Gate input, the rising edge of the Counter n Clock input, or the falling edge of the Counter n Clock input. When the start edge is detected, the counter/timer starts incrementing, and continues incrementing until the stop edge is detected. The C/T then stops incrementing until it is enabled to start another measurement.

You can use edge-to-edge measurement to measure the following:

- Pulse width of a signal pulse (the amount of time that a signal pulse is in a high or a low state, or the amount of time between a rising edge and a falling edge or between a falling edge and a rising edge). You can calculate the pulse width as follows:
 - Pulse width = Number of counts/18 MHz
- Period of a signal pulse (the time between two occurrences of the same edge rising edge to rising edge or falling edge to falling edge). You can calculate the period as follows:
 - Period = 1/Frequency
 - Period = Number of counts/18 MHz
- Frequency of a signal pulse (the number of periods per second). You can calculate the frequency as follows:
 - Frequency = 18 MHz/Number of Counts

When the operation is complete, you can read the value of the counter.

Using software, specify the counter/timer mode as edge-to-edge measurement mode (measure), the C/T clock source as internal, the start edge type, and the stop edge type.

Make sure that the signals are wired appropriately. Refer to the *DT9834 Getting Started Manual* for an example of connecting an edge-to-edge measurement application.

Rate Generation

Use rate generation mode to generate a continuous pulse output signal from the Counter *n* Out line; this mode is sometimes referred to as continuous pulse output or pulse train output. You can use this pulse output signal as an external clock to pace other operations, such as analog input, analog output, or other counter/timer operations.

The pulse output operation is enabled whenever the Counter n Gate signal is at the specified level. While the pulse output operation is enabled, the counter outputs a pulse of the specified type and frequency continuously. As soon as the operation is disabled, rate generation stops.

The period of the output pulse is determined by the C/T clock source (either internal using a clock divider, or external). You can output pulses using a maximum frequency of 9 MHz (this is the frequency of the Counter n Out signal). Refer to page 57 for more information about the C/T clock sources.

Using software, specify the counter/timer mode as rate generation (rate), the C/T clock source as either internal or external, the clock divider (for an internal clock), the polarity of the output pulses (high-to-low transition or low-to-high transition), the duty cycle of the output pulses, and the active gate type (low-level or high-level). Refer to page 59 for more information about pulse output signals and to page 58 for more information about gate types.

Make sure that the signals are wired appropriately. Refer to the *DT9834 Getting Started Manual* for an example of connecting a rate generation application.

One-Shot

Use one-shot mode to generate a single pulse output signal from the Counter *n* Out line when the specified edge is detected on the Counter *n* Gate signal. You can use this pulse output signal as an external digital (TTL) trigger to start other operations, such as analog input or analog output operations.

After the single pulse is output, the one-shot operation stops. All subsequent clock input signals and gate input signals are ignored.

The period of the output pulse is determined by the C/T clock source (either internal using a clock divider, or external). Note that in one-shot mode, the internal C/T clock is more useful than an external C/T clock; refer to page 57 for more information about the C/T clock sources.

Using software, specify the counter/timer mode as one-shot, the clock source as internal (recommended), the clock divider, the polarity of the output pulse (high-to-low transition or low-to-high transition), the duty cycle of the output pulse, and the active gate type (rising edge or falling edge). Refer to page 59 for more information about pulse output types and to page 58 for more information about gate types.

Note: In the case of a one-shot operation, use a duty cycle as close to 100% as possible to output a pulse immediately. Using a duty cycle closer to 0% acts as a pulse output delay.

Make sure that the signals are wired appropriately. Refer to the *DT9834 Getting Started Manual* for an example of connecting a one-shot application.

Repetitive One-Shot

Use repetitive one-shot mode to generate a pulse output signal from the Counter n Out line whenever the specified edge is detected on the Counter n Gate signal. You can use this mode to clean up a poor clock input signal by changing its pulse width, and then outputting it.

The module continues to output pulses until you stop the operation. Note that any Counter n Gate signals that occur while the pulse is being output are not detected by the module.

The period of the output pulse is determined by the C/T clock source (either internal using a clock divider, or external). Note that in repetitive one-shot mode, the internal C/T clock is more useful than an external clock; refer to page 57 for more information about the C/T clock sources.

Using software, specify the counter/timer mode as repetitive one-shot (oneshot-rpt), the polarity of the output pulses (high-to-low transition or low-to-high transition), the duty cycle of the output pulses, the C/T clock source as internal (recommended), the clock divider, and the active gate type (rising edge or falling edge). Refer to page 59 for more information about pulse output types and to page 58 for more information about gates.

Note: In the case of a repetitive one-shot operation, use a duty cycle as close to 100% as possible to output a pulse immediately. Using a duty cycle closer to 0% acts as a pulse output delay.

Make sure that the signals are wired appropriately. Refer to the *DT9834 Getting Started Manual* for an example of connecting a repetitive one-shot application.

Supported Device Driver Capabilities

Data Flow
Buffering
DMA
Triggered Scan Mode
Gain 75
Synchronous Digital I/O
Channels
Filters
Ranges
Resolution
Triggers
Clocks
Counter/Timers
Miscellaneous

The DT9834 Series Device Driver provides support for the analog input (A/D), analog output (D/A), digital input (DIN), digital output (DOUT), and counter/timer (C/T) subsystems. For information on how to configure the device driver, refer to the *DT9834 Series Getting Started Manual*.

Table 6: DT9834 Series Subsystems

DT9834 Series	A/D	D/A ^a	DINp	DOUT	C/T
Total Subsystems on Module	1	2	1	1	5

- a. The first D/A subsystem (Element 0) is used for the analog output voltage. Element 0 is either 12-bits or 16-bits, depending on the model of the module that you are using. The output range is ±10V. The second D/A subsystem (Element 1) is used for the analog input threshold trigger (See "Input Triggers" on page 40.) Element 1 has a resolution of 8-bits and a range of 0 to 255, where 0 equals 0V and 255 equals +10V.
- b. The DIN subsystem contains 16 digital input lines.
- c. The DOUT subsystem contains 16 digital output lines.

The tables in this chapter summarize the features available for use with the DataAcq SDK and the DT9834 Series modules. The DataAcq SDK provides functions that return support information for specified subsystem capabilities at run-time.

The first row in each table lists the subsystem types. The first column in each table lists all possible subsystem capabilities. A description of each capability is followed by the parameter used to describe that capability in the DataAcq SDK.

Note: Blank fields represent unsupported options.

The DataAcq SDK uses the functions olDaGetSSCaps (for those queries starting with OLSSC) and olDaGetSSCapsEx (for those

queries starting with OLSSCE) to return the supported subsystem capabilities for a device.

For more information, refer to the description of these functions in the DataAcq SDK online help. See the *DataAcq User's Manual* for information on launching this help file.

Data Flow

Table 7: DT9834 Series Data Flow Options

DT9834 Series	A/D	D/A	DIN	DOUT	C/T
Single-Value Operation Support OLSSC_SUP_SINGLEVALUE	Yes	Yes	Yes	Yes	
Continuous Operation Support OLSSC_SUP_CONTINUOUS	Yes	Yes	Yes ^a	Yes ^b	Yes ^c
Continuous Operation until Trigger Event Support OLSSC_SUP_CONTINUOUS_PRETRIG					
Continuous Operation before & after Trigger Event OLSSC_SUP_CONTINUOUS_ABOUTTRIG					
DT-Connect Support OLSSC_SUP_DTCONNECT					
Continuous DT-Connect Support OLSSC_SUP_DTCONNECT_CONTINUOUS					
Burst DT-Connect Support OLSSC_SUP_DTCONNECT_BURST					

a. The DIN subsystem supports continuous mode by allowing you to read the digital input port (all 16 digital input lines) using the analog input channel-gain list.

b. The DOUT subsystem supports continuous mode by allowing you to output data from the digital output port (all 16 digital output lines) using the output channel list.

c. The C/T subsystem supports continuous mode by allowing you to read the value of one or more of the five counter/timer channels using the analog input channel-gain list.

Buffering

Table 8: DT9834 Series Buffering Options

DT9834 Series	A/D	D/A	DIN	DOUT	C/T
Buffer Support OLSSC_SUP_BUFFERING	Yes	Yes			
Single Buffer Wrap Mode Support OLSSC_SUP_WRPSINGLE	Yes	Yes	Yes	Yes	Yes
Multiple Buffer Wrap Mode Support OLSSC_SUP_WRPMULTIPLE	Yes	Yes			
Inprocess Buffer Flush Support OLSSC_SUP_INPROCESSFLUSH	Yes ^a				
Waveform Generation Mode Support OLSSC_SUP_WAVEFORM_MODE		Yes			

a. The data from the DT9834 module is transferred to the host in 4,096-byte (2,048-sample) segments. If the application calls **olDaFlushFromBufferInprocess** before the module has transferred 2,048 samples to the host, the buffer on the done queue will contain 0 samples. Your application program must deal with these situations when flushing an inprocess buffer.

DMA

Table 9: DT9834 Series DMA Options

DT9834 Series	A/D	D/A	DIN	DOUT	C/T
Number of DMA Channels OLSSC_NUMDMACHANS	0	0	0	0	0
Supports Gap Free Data with No DMA OLSSC_SUP_GAPFREE_NODMA	Yes	Yes			
Supports Gap Free Data with Single DMA OLSSC_SUP_GAPFREE_SINGLEDMA					
Supports Gap Free Data with Dual DMA OLSSC_SUP_GAPFREE_DUALDMA					

3

Triggered Scan Mode

Table 10: DT9834 Series Triggered Scan Mode Options

DT9834 Series	A/D	D/A	DIN	DOUT	C/T
Triggered Scan Support OLSSC_SUP_TRIGSCAN	Yes				
Maximum Number of CGL Scans per Trigger OLSSC_MAXMULTISCAN	256 ^a	0	0	0	0
Supports Scan per Trigger Event Triggered Scan OLSSC_SUP_RETRIGGER_SCAN_PER_ TRIGGER	Yes				
Supports Internal Retriggered Triggered Scan OLSSC_SUP_RETRIGGER_INTERNAL	Yes				
Extra Retrigger Support OLSSC_SUP_RETRIGGER_EXTRA	Yes				
Maximum Retrigger Frequency OLSSCE_MAXRETRIGGER	250 kHz	250 kHz	0	0	0
Minimum Retrigger Frequency OLSSCE_MINRETRIGGER	0.75 Hz	0.75 Hz	0	0	0

a. The channel-gain list depth of 1024 entries in conjunction with a multiscan of 256 provides an effective channel-gain list depth of up to 256K entries.

Gain

Table 11: DT9834 Series Gain Options

DT9834 Series	A/D	D/A	DIN	DOUT	C/T
Maximum Channel-Gain List Depth OLSSC_CGLDEPTH	1024	5	1	1	0
Sequential Channel-Gain List Support OLSSC_SUP_SEQUENTIAL_CGL	Yes	Yes			
Zero Start Sequential Channel-Gain List Support OLSSC_SUP_ZEROSEQUENTIAL_CGL	Yes	Yes			
Random Channel-Gain List Support OLSSC_SUP_RANDOM_CGL	Yes				
Simultaneous Sample-and-Hold Support OLSSC_SUP_SIMULTANEOUS_SH					
Channel List Inhibit Support OLSSC_SUP_CHANNELLIST_INHIBIT	Yes				
Programmable Gain Support OLSSC_SUP_PROGRAMGAIN	Yes				
Number of Gains OLSSC_NUMGAINS	4	1	1	1	0
Noncontiguous Channels in Channel-Gain List OLSSC_NONCONTIGUOUS_CHANNELNUM					
AutoRanging Support OLSSC_SUP_SINGLEVALUE_AUTORANGE					

Synchronous Digital I/O

Table 12: DT9834 Series Synchronous Digital I/O Options

DT9834 Series	A/D	D/A	DIN	DOUT	C/T
Synchronous Digital I/O Support OLSSC_SUP_SYNCHRONOUS_DIGITALIO	Yes				
Maximum Synchronous Digital I/O Value OLSSC_MAX_DIGITALIOLIST_VALUE	1	65,535	0	0	0

Channels

Table 13: DT9834 Series Channel Options

DT9834 Series	A/D	D/A	DIN	DOUT	C/T
Number of Channels OLSSC_NUMCHANNELS	27 or 42 ^a	4	1	1	0
SE Support OLSSC_SUP_SINGLEENDED	Yes				
SE Channels OLSSC_MAXSECHANS	16	0	0	0	0
DI Support OLSSC_SUP_DIFFERENTIAL	Yes	Yes	Yes	Yes	
DI Channels OLSSC_MAXDICHANS	8	4	1	1	0
DT2896 Channel Expansion Support OLSSC_SUP_EXP2896					
DT727 Channel Expansion OLSSC_SUP_EXP727					

a. For modules with 16 SE or 8 DI channels, channels 0 to 15 read the analog input channels; channel 16 reads all 16 bits from the DIN subsystem; channels 17 to 26 read the C/T channels. For modules with 32 SE or 16 DI channels, channels 0 to 31 read the analog input channels; channel 32 reads all 16 bits from the DIN subsystem; channels 33 to 42 read the C/T channels.

Filters

Table 14: DT9834 Series Filter Options

DT9834 Series	A/D	D/A	DIN	DOUT	C/T
Filter/Channel Support OLSSC_SUP_FILTERPERCHAN					
Number of Filters OLSSC_NUMFILTERS	1	1	1	1	0

Ranges

Table 15: DT9834 Series Range Options

DT9834 Series	A/D	D/A	DIN	DOUT	C/T
Number of Voltage Ranges OLSSC_NUMRANGES	1	1	0	0	0
Range per Channel Support OLSSC_SUP_RANGEPERCHANNEL					

Resolution

Table 16: DT9834 Series Resolution Options

DT9834 Series	A/D	D/A	DIN	DOUT	C/T
Software Programmable Resolution OLSSC_SUP_SWRESOLUTION					
Number of Resolutions OLSSC_NUMRESOLUTIONS	1 ^a	1 ^a	1	1	1

a. Depending on the module that you purchased, the resolution is either 12 bits or 16 bits.

Triggers

Table 17: DT9834 Series Trigger Options

DT9834 Series	A/D	D/A	DIN	DOUT	C/T
Software Trigger Support OLSSC_SUP_SOFTTRIG	Yes	Yes	Yes	Yes	Yes
External Trigger Support OLSSC_SUP_EXTERNTRIG	Yes ^a	Yes			Yes
Positive Threshold Trigger Support OLSSC_SUP_THRESHTRIGPOS	Yes				
Negative Threshold Trigger Support OLSSC_SUP_THRESHTRIGNEG					
Analog Event Trigger Support OLSSC_SUP_ANALOGEVENTTRIG					
Digital Event Trigger Support OLSSC_SUP_DIGITALEVENTTRIG					
Timer Event Trigger Support OLSSC_SUP_TIMEREVENTTRIG					
Number of Extra Triggers OLSSC_NUMEXTRATRIGGERS	1	0	0	0	0

a. OL_TRG_EXTERN is the rising-edge external digital (TTL) trigger input; OL_TRG_EXTRA is the falling-edge digital external (TTL) trigger input; OL_TRG_THRESHPOS is the positive-edge analog threshold trigger from an analog input channel.

Clocks

Table 18: DT9834 Series Clock Options

DT9834 Series	A/D	D/A	DIN	DOUT	C/T
Internal Clock Support OLSSC SUP INTCLOCK	Yes	Yes	Yes	Yes	Yes
	ies	ies	res	ies	162
External Clock Support					
OLSSC_SUP_EXTCLOCK	Yes	Yes			Yes
Simultaneous Input/Output on a Single Clock					
Signal					
OLSSC_SIMULTANEOUS_CLOCKING	No	Yes			
Number of Extra Clocks					
OLSSC_NUMEXTRACLOCKS	0	0	0	0	0
Base Clock Frequency					
OLSSCE_BASECLOCK	18 MHz	18 MHz	0	0	18 MHz
Maximum External Clock Divider					2,147,
OLSSCE_MAXCLOCKDIVIDER	1	1	1	1	483,647
Minimum External Clock Divider					
OLSSCE_MINCLOCKDIVIDER	1	1	1	1	2
Maximum Throughput					
OLSSCE_MAXTHROUGHPUT	500 kHz	500 kHz	0	0	9 MHz
Minimum Throughput					0.004
OLSSCE_MINTHROUGHPUT	0.75 Hz	0.75 Hz	0	0	Hz

Counter/Timers

Table 19: DT9834 Series Counter/Timer Options

DT9834 Series	A/D	D/A	DIN	DOUT	C/T
Cascading Support OLSSC_SUP_CASCADING					
Event Count Mode Support OLSSC_SUP_CTMODE_COUNT					Yes
Generate Rate Mode Support OLSSC_SUP_CTMODE_RATE					Yes
One-Shot Mode Support OLSSC_SUP_CTMODE_ONESHOT					Yes
Repetitive One-Shot Mode Support OLSSC_SUP_CTMODE_ONESHOT_RPT					Yes
Up/Down Counting Mode Support OLSSC_SUP_CTMODE_UP_DOWN					Yes
Edge-to-Edge Measurement Mode Support OLSSC_SUP_CTMODE_MEASURE					15 ^a
Continuous Edge-to-Edge Measurement Mode Support OLSSC_SUP_CTMODE_CONT_MEASURE					
High to Low Output Pulse Support OLSSC_SUP_PLS_HIGH2LOW					Yes
Low to High Output Pulse Support OLSSC_SUP_PLS_LOW2HIGH					Yes
None (internal) Gate Type Support OLSSC_SUP_GATE_NONE					Yes
High Level Gate Type Support OLSSC_SUP_GATE_HIGH_LEVEL					Yes ^b
Low Level Gate Type Support OLSSC_SUP_GATE_LOW_LEVEL					Yes ^b
High Edge Gate Type Support OLSSC_SUP_GATE_HIGH_EDGE					Yes ^b

3

Table 19: DT9834 Series Counter/Timer Options (cont.)

DT9834 Series	A/D	D/A	DIN	DOUT	C/T
Low Edge Gate Type Support OLSSC_SUP_GATE_LOW_EDGE					Yes ^b
Level Change Gate Type Support OLSSC_SUP_GATE_LEVEL					
High Level Gate Type with Input Debounce OLSSC_SUP_GATE_HIGH_LEVEL_DEBOUNCE					
Low Level Gate Type with Input Debounce Support OLSSC_SUP_GATE_LOW_LEVEL_DEBOUNCE					
High Edge Gate Type with Input Debounce OLSSC_SUP_GATE_HIGH_EDGE_DEBOUNCE					
Low Edge Gate Type with Input Debounce Support OLSSC_SUP_GATE_LOW_EDGE_DEBOUNCE					
Level Change Gate Type with Input Debounce OLSSC_SUP_GATE_LEVEL_DEBOUNCE					
Fixed Pulse Width Support OLSSC_SUP_FIXED_PULSE_WIDTH					
Quadrature Decoder OLSSC_SUP_QUADRATURE_DECODER					

a. Edge-to-edge measurement mode is supported on both the gate and clock signals; rising and falling edges are both supported.

b. High-edge and low-edge are supported for one-shot and repetitive one-shot modes. High-level and low-level are supported for event counting, up/down counting, frequency measurement, edge-to-edge measurement, and rate generation modes.

Miscellaneous

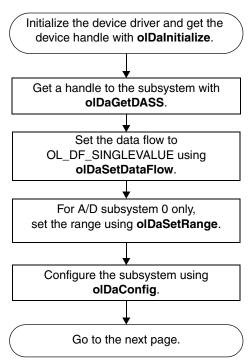
Table 20: DT9834 Series Miscellaneous Options

DT9834 Series	A/D	D/A	DIN	DOUT	C/T
Simultaneous Start List Support OLSSC_SUP_SIMULTANEOUS_START	Yes	Yes			
Pause Operation Support OLSSC_SUP_PAUSE					
Asynchronous Operation Support OLSSC_SUP_POSTMESSAGE	Yes	Yes	Yes ^a		Yes
Binary Encoding Support OLSSC_SUP_BINARY	Yes	Yes	Yes	Yes	Yes
Twos Complement Support OLSSC_SUP_2SCOMP					
Interrupt Support OLSSC_SUP_INTERRUPT			Yes		Yes
FIFO in Data Path Support OLSSC_SUP_FIFO					
Output FIFO Size OLSSC_FIFO_SIZE_IN_K		128 ^b			
Data Processing Capability OLSSC_SUP_PROCESSOR	Yes	Yes	Yes	Yes	Yes
Software Calibration Support OLSSC_SUP_SWCAL	Yes ^c	Yes ^c			

a. The DIN subsystem supports the posting of messages only if the digital input port is configured for continuous mode and if you used the Open Layers Control Panel applet to select any of the first eight digital input lines to perform interrupt-on-change operations. The device driver posts the OLDA_WM_EVENTDONE_WITH_DATA message when a bit changes state. The 16-bit value of the digital input port is also returned.

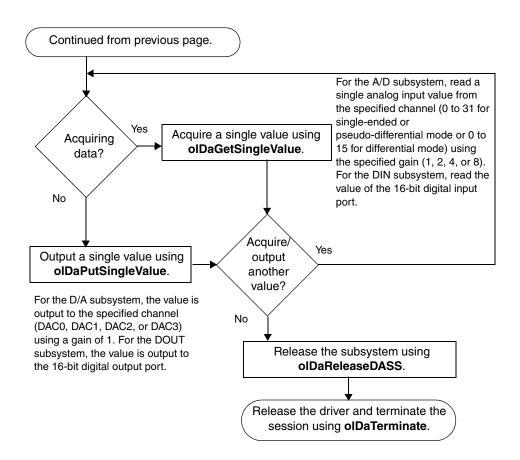
b. At the present time, this query is supported for the DT9834 Series modules only. For this module, the output FIFO size is always 128 K.

c. DT9834 Series modules are calibrated at the factory. If you want to readjust the calibration of the analog input or analog output circuitry, refer to Chapter 6 starting on page 125.

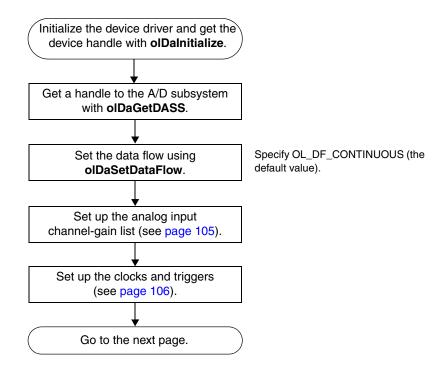

Programming Flowcharts

Single-Value Operations
Continuous A/D Operations
Continuous D/A Operations
Continuous Digital Input Operations
Continuous Digital Output Operations
Event Counting Operations
Up/Down Counting Operations
Frequency Measurement Operations
Edge-to-Edge Measurement Operations
Pulse Output Operations
Simultaneous Operations 103

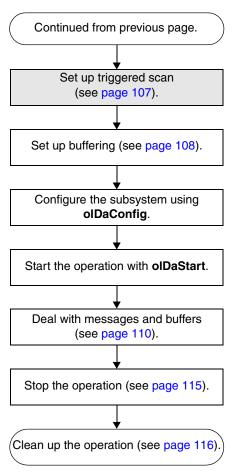
The following flowcharts show the steps required to perform data acquisition operations using DT-Open Layers. For illustration purposes, the DataAcq SDK functions are shown; however, the concepts apply to all DT-Open Layers software.


Note that many steps represent several substeps; if you are unfamiliar with the detailed operations involved with any one step, refer to the indicated page for detailed information. Optional steps appear in shaded boxes.

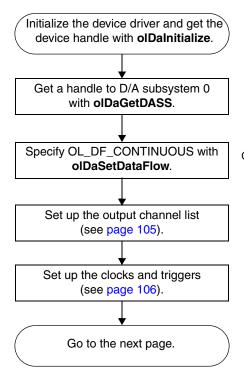
Single-Value Operations



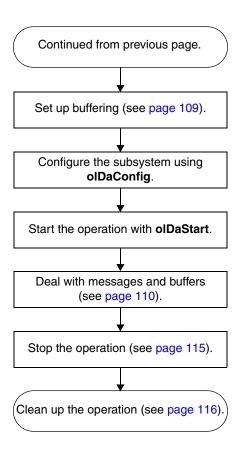
Specify A/D subsystem 0 for an analog input operation, D/A subsystem 0 for an analog output operation, DIN subsystem 0 for a digital input operation, or DOUT subsystem 0 for a digital output operation.


Single-Value Operations (cont.)

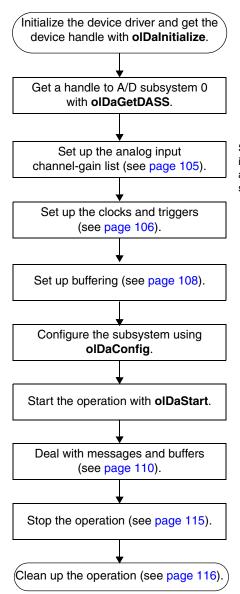
Continuous A/D Operations



Continuous A/D Operations (cont.)

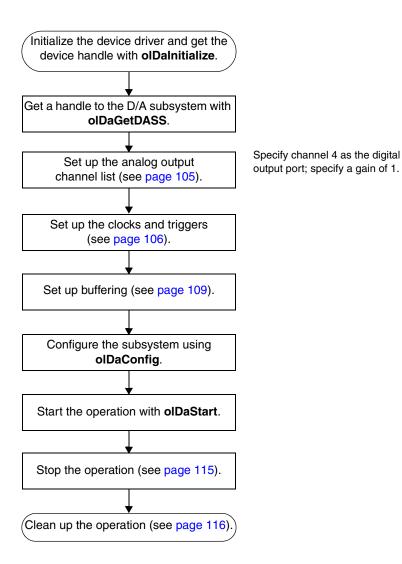

After you configure the subsystem, you can use olDaGetClockFrequency to return the actual frequency of the internal clock; you can use olDaGetRetriggerFrequency to return the actual frequency of the internal retrigger clock.

Continuous D/A Operations

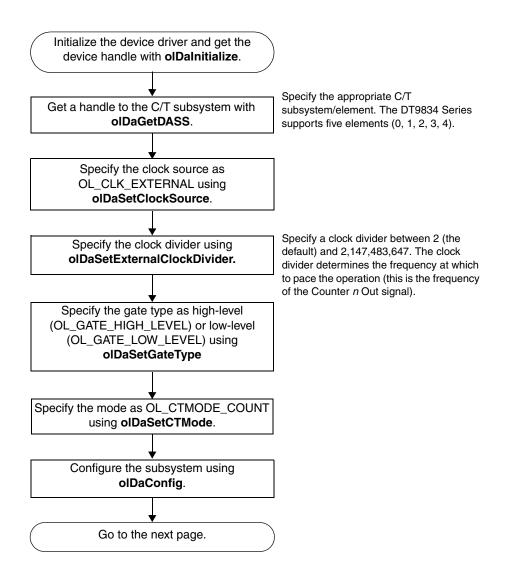


Continuous mode is the default setting.

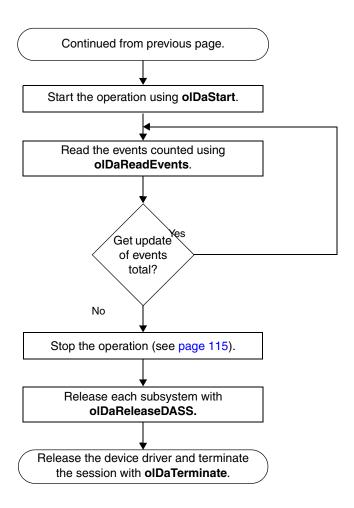
Continuous D/A Operations (cont.)

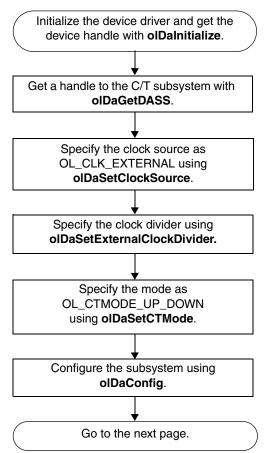


Continuous Digital Input Operations

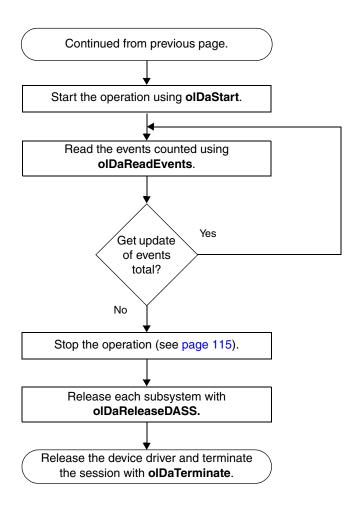


Specify channel 16 or 32 as the digital input port depending on how many analog input channels your board supports; specify a gain of 1.

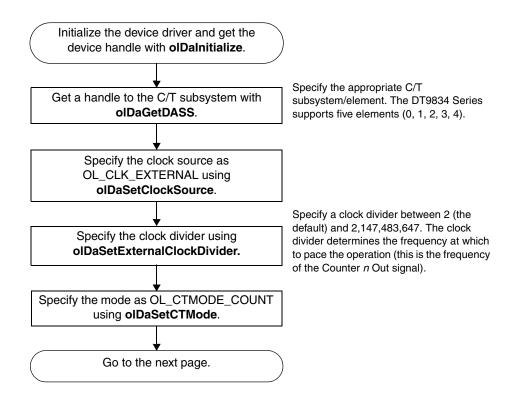

Continuous Digital Output Operations


Event Counting Operations

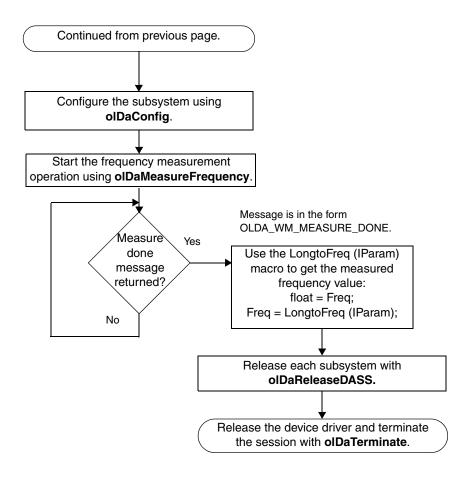
Event Counting Operations (cont.)


Up/Down Counting Operations

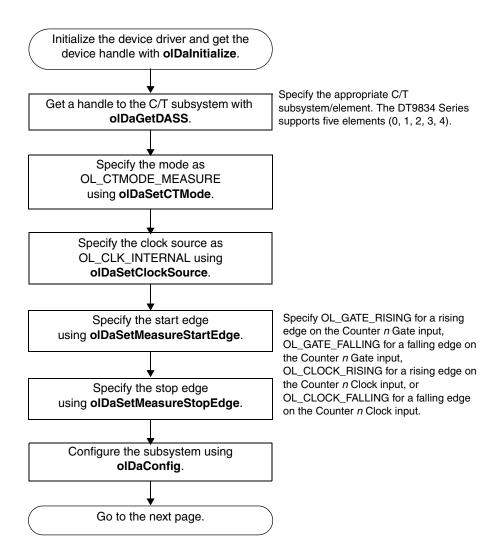
Specify the appropriate C/T subsystem/element. The DT9834 Series supports five elements (0, 1, 2, 3, 4).

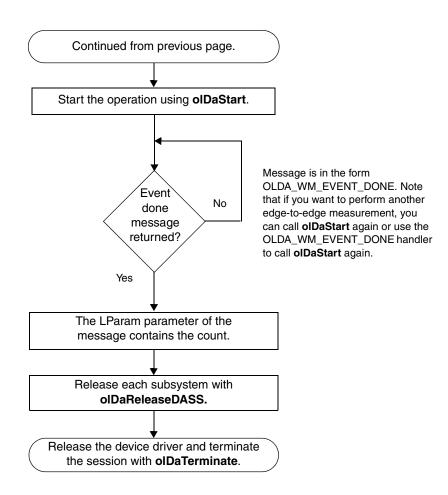

Specify a clock divider between 2 (the default) and 2,147,483,647. The clock divider determines the frequency at which to pace the operation (this is the frequency of the Counter *n* Out signal).

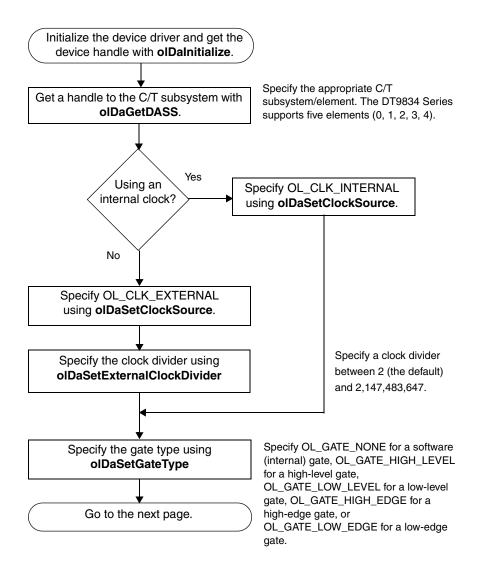
Up/Down Counting Operations (cont.)

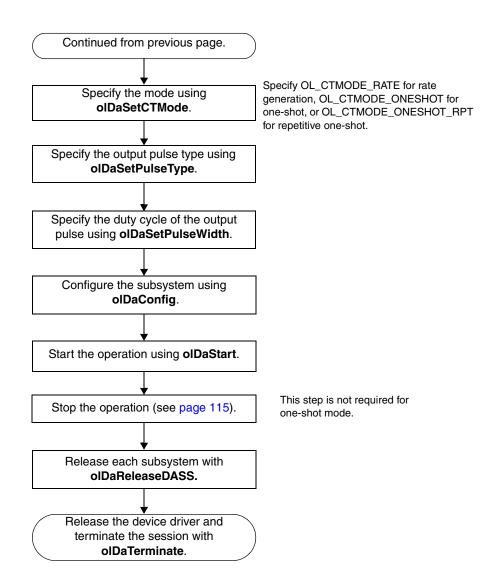


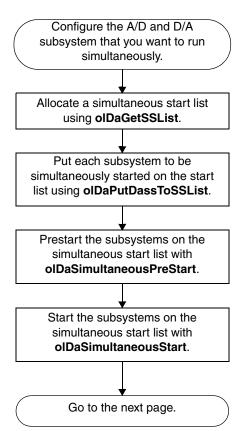
Frequency Measurement Operations


The following flowchart shows the steps required to perform a frequency measurement operation using the Windows timer. If you need more accuracy the Windows timer provides, refer to page 61 of this manual or to your *DataAcq SDK User's Manual* for more information.

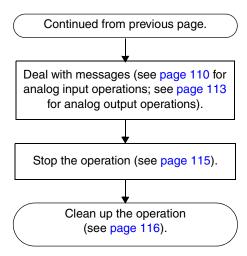

Frequency Measurement Operations (cont.)


Edge-to-Edge Measurement Operations

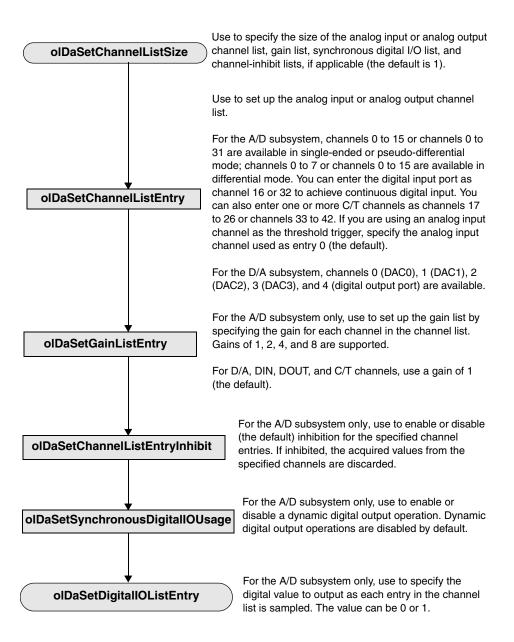

Edge-to-Edge Measurement Operations (cont.)


Pulse Output Operations

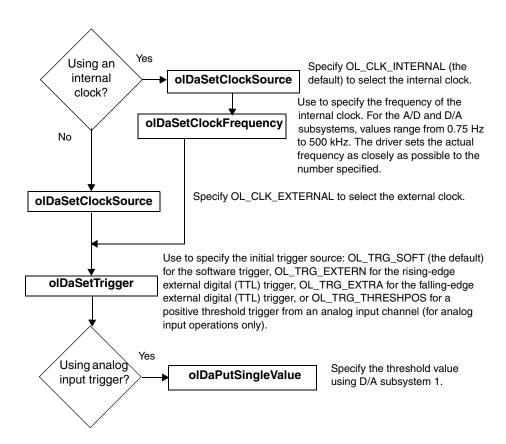
Pulse Output Operations (cont.)

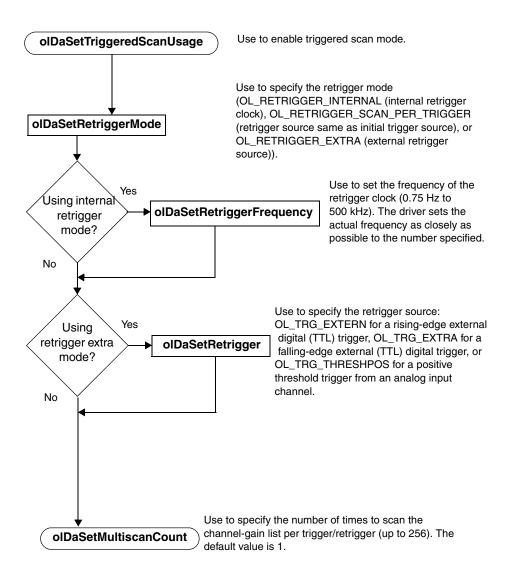


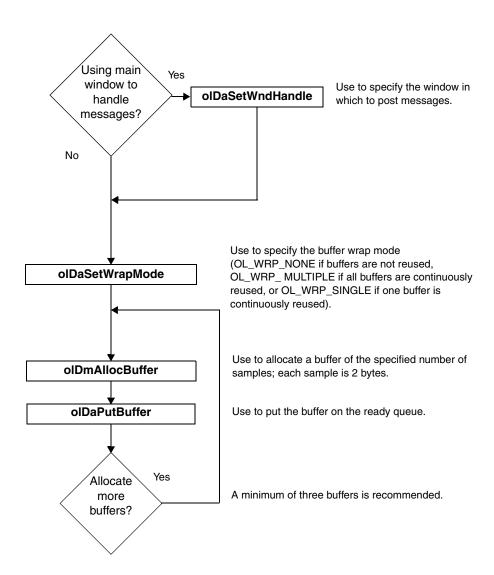
Simultaneous Operations

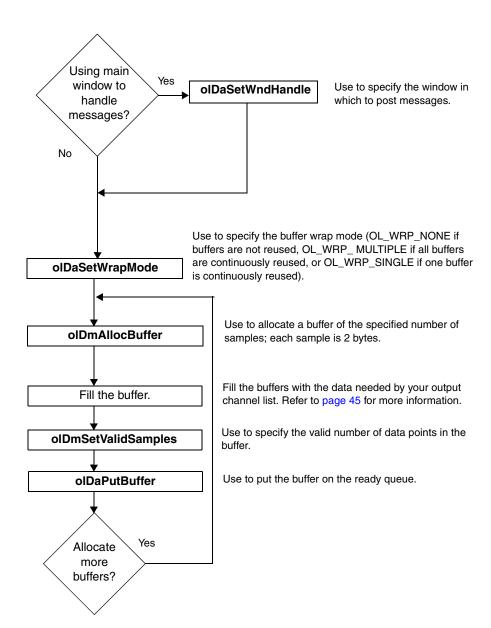


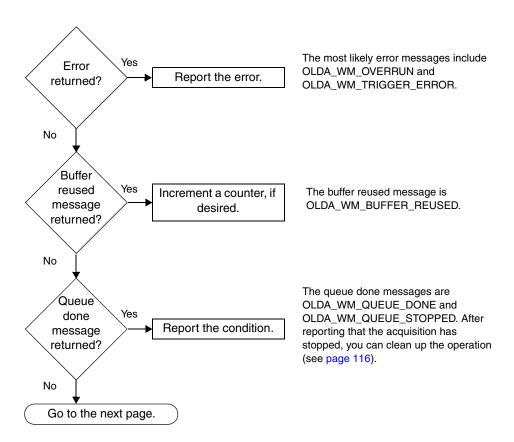
See the previous flow diagrams in this chapter; note that you cannot perform single-value operations simultaneously.

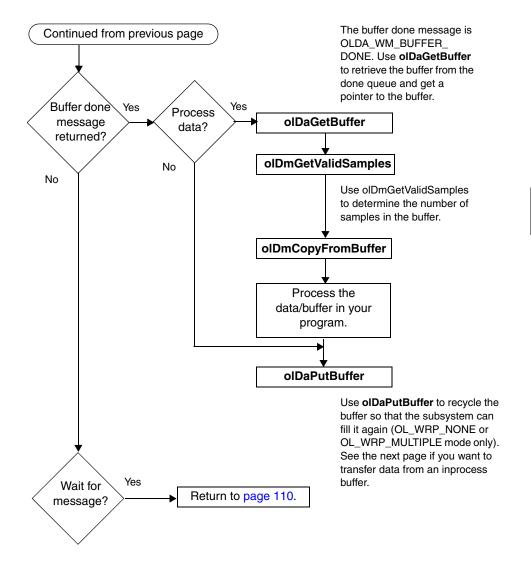

Simultaneous Operations (cont.)

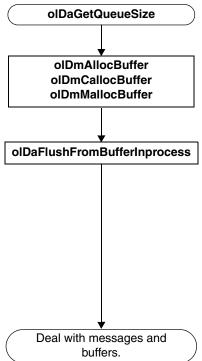

Set Up Channel List and Channel Parameters


Set Clocks and Triggers


Set Up Triggered Scan Mode


Set Up A/D Buffering


Set Up D/A Buffering


Deal with A/D Messages and Buffers

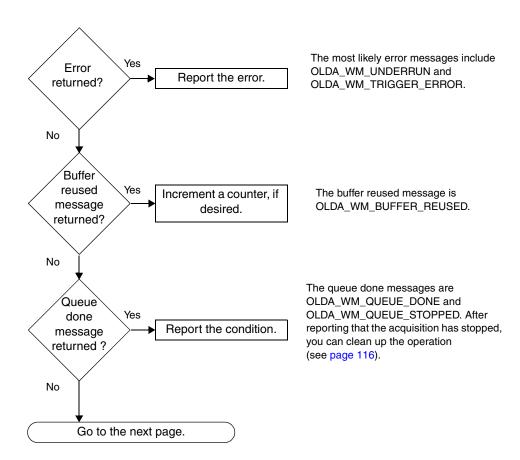
Deal with A/D Messages and Buffers (cont.)

Transfer Data from an Inprocess Buffer

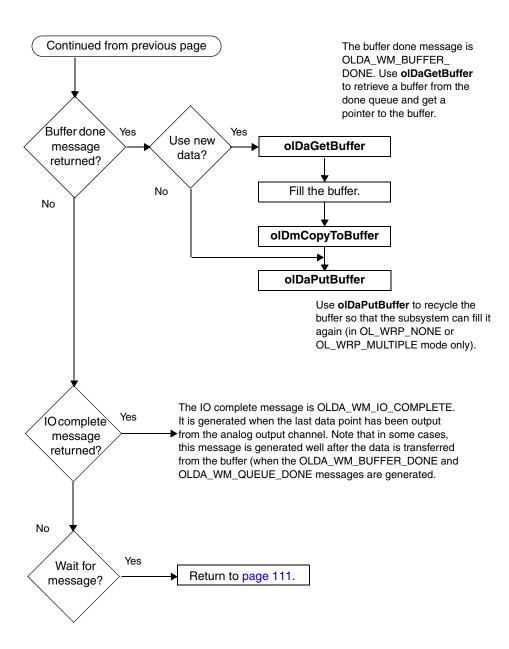
Use to determine the number of buffers on the inprocess queue (at least one must exist).

Use to allocate a buffer of the specified number of samples.

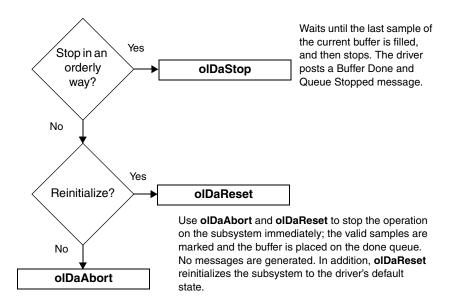
Use to copy the data from the inprocess buffer to the allocated buffer for immediate processing.

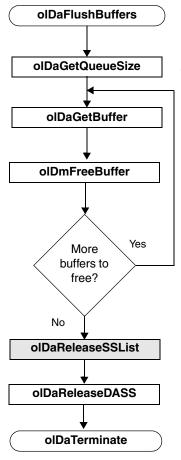

Note that the data from the DT9834 module is transferred to the host in 2,048-byte segments. If the application calls

olDaFlushFromBufferInprocess before the module has transferred 4,096 samples to the host, the buffer on the done queue will contain 0 samples. Your application program must deal with these situations when flushing an inprocess buffer.


The buffer into which inprocess data was copied was put onto the done queue by the driver, resulting in an OLDA_WM_BUFFER_DONE message. See page 110 for more information.

When the inprocess buffer has been filled, it too is placed on the done queue and an OLDA_WM_BUFFER_DONE message is posted. However, the number of valid samples is equal to the queue's maximum samples minus what was copied out.


Deal with D/A Messages and Buffers


Deal with D/A Messages and Buffers (cont.)

Stop the Operation

Clean Up the Operation

Use to flush all buffers on the ready and/or inprocess queues to the done queue.

Use to determine the number of buffers on the done queue.

Use to retrieve each buffer on the done queue.

Use to free each buffer retrieved from the done queue.

For simultaneous operations only, use to release the simultaneous start list.

Use to release each subsystem.

Use to release the device driver and terminate the session.

Troubleshooting

General Checklist	118
Technical Support	122
If Your Module Needs Factory Service	123

General Checklist

Should you experience problems using a DT9834 Series module, do the following:

- 1. Read all the documentation provided for your product. Make sure that you have added any "Read This First" information to your manual and that you have used this information.
- Check the Data Acquisition OMNI CD for any README files and ensure that you have used the latest installation and configuration information available.
- **3.** Check that your system meets the requirements stated in the *DT9834 Series Getting Started Manual*.
- **4.** Check that you have installed your hardware properly using the instructions in the *DT9834 Series Getting Started Manual*.
- **5.** Check that you have installed and configured the device driver properly using the instructions in the *DT9834 Series Getting Started Manual*.
- **6.** Check that you have wired your signals properly using the instructions in the *DT9834 Series Getting Started Manual*.
- 7. Search the DT Knowledgebase in the Support section of the Data Translation web site (at www.datatranslation.com) for an answer to your problem.

If you still experience problems, try using the information in Table 21 to isolate and solve the problem. If you cannot identify the problem, refer to page 119.

Table 21: Troubleshooting Problems

Symptom	Possible Cause	Possible Solution
Module does not respond.	The module configuration is incorrect.	Check the configuration of your device driver; see the instructions in the <i>DT9834</i> Series Getting Started Manual.
	The module is damaged.	Contact Data Translation for technical support; refer to page 122.
Intermittent operation.	Loose connections or vibrations exist.	Check your wiring and tighten any loose connections or cushion vibration sources; see the instructions in the <i>DT9834 Series Getting Started Manual</i> .
	The module is overheating.	Check environmental and ambient temperature; consult the module's specifications on page 143 of this manual and the documentation provided by your computer manufacturer for more information.
	Electrical noise exists.	Check your wiring and either provide better shielding or reroute unshielded wiring; see the instructions in the DT9834 Series Getting Started Manual.
Device failure error reported.	The DT9834 Series module cannot communicate with the Microsoft bus driver or a problem with the bus driver exists.	Check your cabling and wiring and tighten any loose connections; see the instructions in the <i>DT9834 Series Getting Started Manual</i> .
	The DT9834 Series module was removed while an operation was being performed.	Ensure that your DT9834 Series module is properly connected; see the instructions in the DT9834 Series Getting Started Manual.

Table 21: Troubleshooting Problems (cont.)

Symptom	Possible Cause	Possible Solution
Data appears to be invalid.	An open connection exists.	Check your wiring and fix any open connections; see the instructions in the DT9834 Series Getting Started Manual.
	A transducer is not connected to the channel being read.	Check the transducer connections; see the instructions in the <i>DT9834 Series</i> Getting Started Manual.
	The module is set up for differential inputs while the transducers are wired as single-ended inputs or vice versa.	Check your wiring and ensure that what you specify in software matches your hardware configuration; see the instructions in the DT9834 Series Getting Started Manual.
	The DT9834 Series module is out of calibration.	DT9834 Series modules are calibrated at the factory. If you want to readjust the calibration of the analog input or analog output circuitry, refer to Chapter 6 starting on page 125.

5

Table 21: Troubleshooting Problems (cont.)

Symptom	Possible Cause	Possible Solution
Computer does not boot.	The power supply of the computer is too small to handle all the system resources.	Check the power requirements of your system resources and, if needed, get a larger power supply; consult the module's specifications on page 143 of this manual.
USB 2.0 is not recognized.	Your operating system does not have the appropriate Service Pack installed.	Ensure that you load the appropriate Windows Service Pack (version 2 for Windows XP or version 4 for Windows 2000). If you are unsure of whether you are using USB 2.0 or USB 1.1, run the Open Layers Control Panel applet, described in the <i>DT9834 Series Getting Started Manual</i> .
	Standby mode is enabled on your PC.	For some PCs, you may need to disable standby mode on your system for proper USB 2.0 operation. Consult Microsoft for more information.

Technical Support

If you have difficulty using a DT9834 Series module, Data Translation's Technical Support Department is available to provide technical assistance.

If you have difficulty using a DT9832 Series module, Data Translation's Technical Support Department is available to provide technical assistance.

To request technical support, go to our web site at http://www.datatranslation.com and click on the Support link.

When requesting technical support, be prepared to provide the following information:

- Your product serial number
- The hardware/software product you need help on
- The version of the OMNI CD you are using
- Your contract number, if applicable

If you are located outside the USA, contact your local distributor; see our web site (www.datatranslation.com) for the name and telephone number of your nearest distributor.

5

If Your Module Needs Factory Service

If your module must be returned to Data Translation, do the following:

 Record the module's serial number, and then contact the Customer Service Department at (508) 481-3700, ext. 1323 (if you are in the USA) and obtain a Return Material Authorization (RMA).

If you are located outside the USA, call your local distributor for authorization and shipping instructions; see our web site (www.datatranslation.com) for the name and telephone number of your nearest distributor. All return shipments to Data Translation must be marked with the correct RMA number to ensure proper processing.

- **2.** Using the original packing materials, if available, package the module as follows:
 - Wrap the module in an electrically conductive plastic material. Handle with ground protection. A static discharge can destroy components on the module.
 - Place in a secure shipping container.
- 3. Return the module to the following address, making sure the RMA number is visible on the outside of the box.

Customer Service Dept. Data Translation, Inc. 100 Locke Drive Marlboro, MA 01752-1192

Calibration

Using the Calibration Utility	127
Calibrating the Analog Input Subsystem	128
Calibrating the Analog Output Subsystem	131

DT9834 Series modules are calibrated at the factory and should not require calibration for initial use. We recommend that you check and, if necessary, readjust the calibration of the analog input and analog output circuitry on the DT9834 Series modules every six months using the DT9834 Calibration Utility.

Note: Ensure that you installed the DT9834 Series Device Driver prior to using the DT9834 Calibration Utility. Refer to the *DT9834 Series Getting Started Manual* for more information on installing the device driver.

This chapter describes how to calibrate the analog input and output subsystems of DT9834 Series modules using the DT9834 Calibration Utility.

Using the Calibration Utility

Start the DT9834 Calibration Utility as follows:

- **1.** Ensure that you installed the software using the instructions in the *DT9834 Series Getting Started Manual*.
- Click Start from the Task Bar, and then select Programs | Data Translation, Inc | Calibration Utilities | DT9834 Calibration Utility.
 - *The main menu of the DT9834 Series Calibration Utility appears.*
- 3. Select the module to calibrate, and then click **OK**.

Once the DT9834 Calibration Utility is running, you can calibrate the analog input circuitry (either automatically or manually), described on page 128, or the analog output circuitry of the DT9834 Series module, described on page 131.

Calibrating the Analog Input Subsystem

This section describes how to use the DT9834 Calibration Utility to calibrate the analog input subsystem of aDT9834 Series module.

Connecting a Precision Voltage Source

To calibrate the analog input circuitry, you need to connect an external +9.3750 V precision voltage source to the DT9834 Series module as follows:

- 1. Connect the precision voltage source to Analog In 0 (AD Ch0).
- **2.** Connect Analog In 1 (AD Ch1) to Analog Input 1 Return.

Using the Auto-Calibration Procedure

Auto-calibration is the easiest to use and is the recommended calibration method. To auto-calibrate the analog input subsystem, do the following:

- Select the A/D Configuration tab of the DT9834 Calibration Utility.
- **2.** Set the voltage supply on AD Ch0 to -9.375V.
- 3. Click Start Auto Calibration.

A message appears notifying you to verify that -9.375 V is applied to AD Ch0.

4. Check that the supplied voltage to AD Ch0 is -9.375V, and then click **OK**.

The offset value is calibrated. When the offset calibration is complete, a message appears notifying you to set the input voltage of AD Ch 0 to +9.375 V.

5. Check that the supplied voltage to AD Ch0 is +9.375V, and then click **OK**.

The gain value is calibrated. When the gain calibration is complete, a message appears notifying you to set the input voltage of AD Ch 1 to 0 V.

6. Check that the supplied voltage to AD Ch1 is 0 V, and then click **OK**.

The PGA zero value is calibrated and a completion message appears.

7. Click OK to finalize the analog input calibration process.

Note: At any time, you can click **Restore Factory Settings** to reset the A/D calibration values to their original factory settings. This process will undo any auto or manual calibration settings.

Using the Manual Calibration Procedure

If you want to manually calibrate the analog input circuitry instead of auto-calibrating it, do the following:

- **1.** Adjust the offset as follows:
 - a. Verify that –9.375V is applied to AD Ch0, and that A/D Channel Select is set to Channel 0.
 The current voltage reading for this channel is displayed in the A/D Value window.
 - **b.** Adjust the offset by entering values between 0 and 255 in the Offset edit box, or by clicking the up/down buttons until the A/D Value is –9.3750 V.
- **2.** Adjust the gain as follows:
 - **a.** Verify that 9.375V is applied to AD Ch0, and that A/D Channel Select is set to Channel 0.

 The current voltage reading for this channel is displayed in the A/D Value window.
 - **b.** Adjust the gain by entering values between 0 and 255 in the Gain edit box, or by clicking the up/down buttons until the A/D Value is 9.3750 V.

- **3.** Adjust the PGA zero value as follows:
 - **a.** Verify that 0 V is applied to AD Ch1, and that A/D Channel Select is set to Channel (which also sets the gain to 8). The current voltage reading for this channel is displayed in the A/D Value window.
 - **b.** Adjust the PGA zero value by entering values between 0 and 255 in the PGA Zero edit box, or by clicking the up/down buttons until the A/D Value is 0.0000.

Note: At any time, you can click **Restore Factory Settings** to reset the A/D calibration values to their original factory settings. This process will undo any auto or manual calibration settings.

Once you have finished this procedure, continue with "Calibrating the Analog Output Subsystem" on page 131.

Calibrating the Analog Output Subsystem

This section describes how to use the DT9834 Calibration Utility to calibrate the analog output subsystem of a DT9834 Series module.

To calibrate the analog output circuitry, you need to connect an external precision voltmeter to analog output channels 0, 1, 2, and 3 of the DT9834 Series module.

Do the following to calibrate the analog output circuitry:

- Select the D/A Configuration tab of the DT9834 Calibration Utility.
- **2.** Connect an external precision voltmeter to Analog Output 0 (DAC Ch0) of the DT9834 Series module.
- 3. In the DAC Output Voltage box, select –9.375 V.
- 4. Adjust the offset by entering values between 0 and 255 in the DAC 0 Offset edit box or by clicking the up/down buttons until the voltmeter reads –9.375 V.
- 5. In the DAC Output Voltage box, select 9.375 V.
- 6. Adjust the gain by entering values between 0 and 255 in the DAC 0 Gain edit box or by clicking the up/down buttons until the voltmeter reads 9.375 V.
- 7. Connect an external precision voltmeter to Analog Output 1 (DAC Ch1) of the DT9834 Series module.
- 8. In the DAC Output Voltage box, select –9.375 V.
- **9.** Adjust the offset by entering values between 0 and 255 in the DAC 1 Offset edit box or by clicking the up/down buttons until the voltmeter reads –9.375 V.
- **10.** In the DAC Output Voltage box, select **9.375 V**.
- 11. Adjust the gain by entering values between 0 and 255 in the DAC 1 Gain edit box or by clicking the up/down buttons until the voltmeter reads 9.375 V.

- **12.** Connect an external precision voltmeter to Analog Output 2 (DAC Ch2) of the DT9834 Series module.
- 13. In the DAC Output Voltage box, select –9.375 V.
- **14.** Adjust the offset by entering values between 0 and 255 in the DAC 2 Offset edit box or by clicking the up/down buttons until the voltmeter reads –9.375 V.
- **15.** In the DAC Output Voltage box, select **9.375 V**.
- 16. Adjust the gain by entering values between 0 and 255 in the DAC 2 Gain edit box or by clicking the up/down buttons until the voltmeter reads 9.375 V.
- **17.** Connect an external precision voltmeter to Analog Output 3 (DAC Ch3) of the DT9834 Series module.
- 18. In the DAC Output Voltage box, select -9.375 V.
- **19.** Adjust the offset by entering values between 0 and 255 in the DAC 3 Offset edit box or by clicking the up/down buttons until the voltmeter reads –9.375 V.
- 20. In the DAC Output Voltage box, select 9.375 V.
- 21. Adjust the gain by entering values between 0 and 255 in the DAC 3 Gain edit box or by clicking the up/down buttons until the voltmeter reads 9.375 V.

Note: At any time, you can click **Restore Factory Settings** to reset the D/A calibration values to their original factory settings. This process will undo any D/A calibration settings.

Once you have finished this procedure, the analog output circuitry is calibrated. To close the DT9834 Calibration Utility, click the close box in the upper right corner of the window.

Specifications

Table 3 lists the specifications for the A/D subsystem on the DT9834 Series modules.

Table 3: A/D Subsystem Specifications

Feature	Specifications
Number of analog input channels ^a Single-ended: Pseudo-differential: Differential:	Up to 32 Up to 32 Up to 16
Number of gains	4 (1, 2, 4, 8)
Resolution	12 bits or 16 bits, depending on the model of the module that you are using ^b
Data encoding	Offset binary
System accuracy, to % of FSR 12-bit resolution Gain = 1: Gain = 2: Gain = 4: Gain = 8: 16-bit resolution Gain = 1: Gain = 2: Gain = 2: Gain = 4: Gain = 8:	±0.03% ±0.04% ±0.05% ±0.07% ±0.01% ±0.02% ±0.02% ±0.03%
Range	±10 V, ±5 V, ±2.5 V, ±1.25 V
Nonlinearity	<1/2 LSB
Differential nonlinearity	½ LSB
Inherent quantizing error	½ LSB

Table 3: A/D Subsystem Specifications (cont.)

Feature	Specifications
Drift	
Zero:	±10 μV/° C
Gain:	±30 ppm of FSR/° C
Differential linearity:	
16-bit resolution:	±2 ppm of FSR/° C
12-bit resolution:	±3 ppm of FSR/° C
Input impedance	
Off channel:	100 MΩ, 10 pF
On channel:	100 MΩ, 100 pF
Input bias current	±20 nA
Common mode voltage	±11 V, maximum
Common mode rejection ratio	
16-bit resolution:	80 dB, gain = 1 @ 1 k Ω
12-bit resolution:	74 dB, gain = 1 @ 1 k Ω
Maximum input voltage (without damage)	
Power on:	±30 V
Power off:	±20 V
A/D conversion time	2.0 μs
Channel acquisition time (±½ LSB)	1 μs, typical
Sample-and-hold	
Aperture uncertainty:	0.2 ns, typical
Aperture delay:	50 ns, typical
Throughput	
Single channel:	500 kSamples/s
Multiple channel:	500 kSamples/s ±0.05% per channel

Table 3: A/D Subsystem Specifications (cont.)

Feature	Specifications
ESD protection Arc: Contact:	8 kV 4 kV
Reference	+5 V ±0.010 V
Monotonicity 16-bit resolution: 12-bit resolution:	1 LSB Yes

a. The channel type and the number of channels available depend on the model you purchase.

b. Of the modules that support analog input operations, models DT9834-16-0-12-OEM, DT9834-16-0-12-BNC, DT9834-08-0-12-BNC, DT9834-16-4-12-OEM, DT9834-16-4-12-BNC, and DT9834-08-4-12-BNC have 12-bit resolution; models DT9834-16-0-16-OEM, DT9834-16-0-16-BNC, DT9834-08-0-16-BNC, DT9834-16-4-16-OEM, DT9834-16-4-16-BNC, DT9834-08-0-16-STP, and DT9834-32-0-16-OEM have 16-bit resolution.

Table 4 lists the specifications for the ${\rm D/A}$ subsystem on the DT9834 Series modules.

Table 4: D/A Subsystem Specifications

tuble 4. DIA oubbystem opcomounous		
Feature	Specifications	
Number of analog output channels	Up to 4	
Number of elements	2; element 0 is for the analog output voltage and element 1 is for the analog input threshold trigger	
Resolution	Element 0: 12 bits or 16 bits, depending on the model of the module that you are using ^a Element 1: 8 bits	
Data encoding	Offset binary	
Nonlinearity 16-bit resolution: 12-bit resolution:	1.0 LSB ½ LSB	
Differential nonlinearity 16-bit resolution: 12-bit resolution:	1.0 LSB ½ LSB	
Inherent quantizing error 16-bit resolution: 12-bit resolution:	1.0 LSB ½ LSB	
Output range	±10 V	
Error Zero: Gain:	Adjustable to 0 Adjustable to 0	
Drift Zero (bipolar): Gain:	±10 ppm of FSR/° C ±30 ppm of FSR/° C	

Table 4: D/A Subsystem Specifications (cont.)

Feature	Specifications
Throughput Waveform generation mode: Continuously paced analog output mode	500 kSamples/s per channel 500 kSamples/s per channel
FIFO	128 kSamples, total
Current output	±5 mA maximum load
Output impedance	0.1 Ω maximum
Capacitive driver capability	0.004 μF
Protection	Short circuit to analog ground
Power-on voltage	0 V ±10 mV maximum
Settling time to 0.01% of FSR 16-bit resolution: 12-bit resolution:	4.0 μs, 100 mV steps 5.0 μs, 10 V steps 1.0 μs, 100 mV steps 2.0 μs, 10 V steps
Slew rate	10 V/μs
Glitch energy	12 nV/s, typical
ESD protection Arc: Contact:	8 kV 4 kV
Monotonicity 16-bit resolution: 12-bit resolution:	1 LSB Yes

a. Of the modules that support analog output operations, models DT9834-00-4-12-OEM, DT9834-00-4-12-BNC, DT9834-16-4-12-OEM, DT9834-16-4-12-BNC, and DT9834-08-4-12-BNC have 12-bit resolution; models DT9834-00-4-16-OEM, DT9834-00-4-16-BNC, DT9834-16-4-16-OEM, DT9834-16-4-16-BNC, and DT9834-08-4-16-BNC have 16-bit resolution.

Table 5 lists the specifications for the DIN/DOUT subsystems on the DT9834 Series modules.

Table 5: DIN/DOUT Subsystem Specifications

, , , , , , , , , , , , , , , , , , ,	
Feature	Specifications
Number of digital I/O lines	32 (16 digital input, 16 digital output)
Number of ports	2 (16 bits each)
Number of dynamic digital output lines	1
Input termination	Inputs tied to +3.3 V through 15 k Ω pull-up resistors
Logic family	LVTTL (+5 V tolerance)
Logic sense	Positive true
Inputs Input type: Input logic load: High input voltage: Low input voltage: Low input current:	Level-sensitive 1 LVTTL 2.0 V minimum 0.8 V maximum -0.4 mA maximum
Outputs Fan out: High output: Low output: High output current: Low output current:	12 mA 2.0 V minimum 0.8 V maximum –12 mA maximum 12 mA maximum
Interrupt on change	Yes
Clocked with sample clock	Yes
Software I/O selectable	No

Table 6 lists the specifications for the C/T subsystems on the DT9834 Series modules.

Table 6: C/T Subsystem Specifications

Feature	Specifications
Number of counter/timers	5
Resolution	32 bits per channel
Minimum pulse width (minimum amount of time it takes a C/T to recognize an input pulse)	55.5 ns
Logic family	LVTTL (+5 V tolerance)
Inputs	
Input logic load:	1 LVTTL
High input voltage:	2.0 V minimum
Low input voltage:	0.8 V maximum
Low input current:	−0.4 mA maximum
Outputs	
Fan out:	12 mA
High output:	2.0 V minimum
Low output:	0.8 V maximum
High output current:	–12 mA maximum
Low output current:	12 mA maximum

Table 7 lists the specifications for the external A/D and D/A triggers on the DT9834 Series modules.

Table 7: External A/D and D/A Trigger Specifications

Feature	Specifications	
Trigger sources		
Internal:	Software-initiated	
External:	Software-selectable	
-		
Input type	Edge-sensitive	
Logic family	LVTTL (+5 V tolerance)	
Inputs		
Input logic load:	1 LVTTL	
Input termination:	2.2 k Ω pull-up to +3.3 V	
High input voltage:	2.0 V minimum	
Low input voltage:	0.8 V maximum	
High input current:	25 μA maximum	
Low input current:	-0.25 mA maximum	
Minimum pulse width		
High:	25 ns	
Low:	25 ns	
Triggering modes		
Single scan:	Yes	
Continuous scan:	Yes	
Triggered scan:	Yes	

Table 8 lists the specifications for the internal A/D and D/A clocks on the DT9834 Series modules.

Table 8: Internal A/D and D/A Clock Specifications

Feature	Specifications	
Reference frequency	18 MHz	
Divisor range	3 to 4,294,967,295	
Usable range	0.00210 Hz to 500 kHz	

Table 9 lists the specifications for the external A/D and D/A clocks on the DT9834 Series modules.

Table 9: External A/D and D/A Clock Specifications

Feature	Specifications	
Input type	Edge-sensitive, rising or falling edge programmable	
Logic family	LVTTL (+5 V tolerance)	
Inputs		
Input logic load:	1 LVTTL	
Input termination:	2.2 k Ω pull-up to +3.3 V	
High input voltage:	2.0 V	
Low input voltage:	0.8 V	
Low input current:	1.2 mA	
Oscillator frequency	DC to 9 MHz	
Minimum pulse width		
High:	25 ns	
Low:	25 ns	

Table 10 lists the power, physical, and environmental specifications for the DT9834 Series modules.

Table 10: Power, Physical, and Environmental Specifications

Feature	Specifications	
Power, +5 V	±5% @ 2 A maximum	
Physical Dimensions (OEM): Dimensions (BNC): Dimensions (STP): Weight (OEM): Weight (STP):	190 mm x 100 mm x 20 mm 184.4 mm x 100 mm (7.30 X 3.94 inches) 216 mm x 106 mm x 51 mm 4.6 ounces 2.1 lbs	
Environmental Operating temperature range (OEM): Operating temperature range (BNC): Operating temperature range (STP): Storage temperature range: Relative humidity:	0° C to 55° C 0° C to 45° C 0° C to 45° C -25° C to 85° C To 95%, noncondensing	

Table 11 lists the mating cable connectors for the connectors on the BNC connection box, the OEM version of the DT9834 Series module, and the EP353 and EP356 accessory panels.

Table 11: Mating Cable Connectors

Module/Panel	Connector	Part Number on Module (or Equivalent)	Mating Cable Connector
BNC connection box	Analog input	AMP/Tyco 747375-8	AMP/Tyco 747917-2
	Digital I/O	AMP/Tyco 747301-8	AMP/Tyco 747916-2
	C\T, DAC, Clk, Trig	AMP/Tyco 747301-8	AMP/Tyco 747916-2
OEM version	J2	AMP/Tyco 1-104068-8	AMP/Tyco 1-111196-7
	J3	AMP/Tyco 1-104068-8	AMP/Tyco 1-111196-7
	TB1 ^a	PCD, Inc. ELVH03500	PCD, Inc. ELVP03100
EP353 accessory panel	J1	AMP/Tyco 102321-6	AMP/Tyco 746288-6
	J2	AMP/Tyco 747375-8	AMP/Tyco 747917-2
EP356 accessory panel	J1	AMP/Tyco 747301-8	AMP/Tyco 747916-2
	J2	AMP/Tyco 747301-8	AMP/Tyco 747916-2

a. Secondary power connector.

Connector Pin Assignments

OEM Version Connector Pin Assignments	146
BNC Connection Box Connector Pin Assignments	152
STP Connection Box Pin Assignments	159
EP353 Accessory Panel Connector Pin Assignments	168
EP356 Accessory Panel Connector Pin Assignments	172
EP355 Screw Terminal Assignments	175

OEM Version Connector Pin Assignments

This section describes the pin assignments for the J2 and J3 connectors on the OEM version of the DT9834 Series modules, as well as the secondary power connector, TB1. Figure 6 shows the orientation of the pins on these connectors.

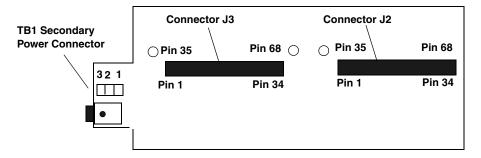


Figure 6: Orientation of Connectors J2 and J3

Table 12 lists the pin assignments for connector J2 on the OEM version of the DT9834 Series module. Table 13 lists the pin assignments for connector J3 on the OEM version of the DT9834 Series module. Table 14 lists the pin assignments for connector TB1 on the OEM version of the DT9834 Series modules.

Table 12: Pin Assignments for Connector J2 on the OEM Version of Module

Pin	Signal Description	Pin	Signal Description
1	+5 V Analog	35	Digital Ground
2	Amplifier Low ^a	36	Analog Ground
3	Analog Ground	37	Analog Ground

Table 12: Pin Assignments for Connector J2 on the OEM Version of Module (cont.)

Pin	Signal Description	Pin	Signal Description
4	Analog Input 15 / Analog Input 23 ^b	38	Analog Input 15 Return / Analog In 31 ^c
5	Analog Ground	39	Analog Ground
6	Analog Input 14 / Analog Input 22 ^b	40	Analog Input 14 Return / Analog In 30 ^c
7	Analog Ground	41	Analog Ground
8	Analog Input 13 / Analog Input 21 ^b	42	Analog Input 13 Return / Analog In 29 ^c
9	Analog Ground	43	Analog Ground
10	Analog Input 12 / Analog Input 20 ^b	44	Analog Input 12 Return / Analog In 28 ^c
11	Analog Ground	45	Analog Ground
12	Analog Input 11 / Analog Input 19 ^b	46	Analog Input 11 Return / Analog In 27 ^c
13	Analog Ground	47	Analog Ground
14	Analog Input 10 / Analog Input 18 ^b	48	Analog Input 10 Return / Analog In 26 ^c
15	Analog Ground	49	Analog Ground
16	Analog Input 9 / Analog Input 17 ^b	50	Analog Input 9 Return / Analog In 25 ^c
17	Analog Ground	51	Analog Ground
18	Analog Input 8 / Analog Input 16 ^b	52	Analog Input 8 Return / Analog In 24 ^c
19	Analog Ground	53	Analog Ground

Table 12: Pin Assignments for Connector J2 on the OEM Version of Module (cont.)

Pin	Signal Description	Pin	Signal Description
20	Analog In 7	54	Analog In 7 Return/ Analog In 15 ^d
21	Analog Ground	55	Analog Ground
22	Analog In 6	56	Analog In 6 Return/ Analog In 14 ^a
23	Analog Ground	57	Analog Ground
24	Analog In 5	58	Analog In 5 Return/ Analog In 13 ^a
25	Analog Ground	59	Analog Ground
26	Analog In 4	60	Analog In 4 Return/ Analog In 12 ^a
27	Analog Ground	61	Analog Ground
28	Analog In 3	62	Analog In 3 Return/ Analog In 11 ^a
29	Analog Ground	63	Analog Ground
30	Analog In 2	64	Analog In 2 Return/ Analog In 10 ^a
31	Analog Ground	65	Analog Ground
32	Analog In 1	66	Analog In 1 Return/ Analog In 9 ^a
33	Analog Ground	67	Analog Ground
34	Analog In 0	68	Analog In 0 Return/ Analog In 8 ^a

- a. If you are using the single-ended or pseudo-differential configuration, ensure that you connect this signal to analog ground on the module and to analog ground from your signal source. Refer to Chapter 4 of the DT9834 Series Getting Started Manual for more information.
- b. These pins are used for the DT9834-32-0-16-OEM module only. The first signal description applies to the differential configuration; the second signal description applies to the single-ended configuration.
- c. These pins are used for the DT9834-32-0-16-OEM module only. The first signal description (Return) applies to the differential configuration; the second signal description applies to the single-ended configuration.
- d. The first signal description (Return) applies to the differential configuration for all modules. The second signal description applies to the single-ended configuration for the DT9834-16-0-12-OEM, DT9834-08-0-12-OEM, DT9834-16-0-16-OEM, DT9834-08-0-16-OEM, DT9834-16-4-12-OEM, and DT9834-08-4-12-OEM modules only.

Table 13: Pin Assignments for Connector J3 on the OEM Version of Module

Pin	Signal Description	Pin	Signal Description
1	Counter 4 Out	35	Counter 4 Gate
2	Counter 4 Clock	36	Digital Ground
3	Counter 3 Out	37	Counter 3 Gate
4	Counter 3 Clock	38	Digital Ground
5	Counter 2 Out	39	Counter 2 Gate
6	Counter 2 Clock	40	Digital Ground
7	Counter 1 Out	41	Counter 1 Gate
8	Counter 1 Clock	42	Digital Ground
9	Counter 0 Out	43	Counter 0 Gate
10	Counter 0 Clock	44	Digital Ground
11	Digital Ground	45	Dynamic Digital Out
12	Digital Input 15	46	Digital Out 15

Table 13: Pin Assignments for Connector J3 on the OEM Version of Module (cont.)

Pin	Signal Description	Pin	Signal Description
13	Digital Input 14	47	Digital Out 14
14	Digital Input 13	48	Digital Out 13
15	Digital Input 12	49	Digital Out 12
16	Digital Input 11	50	Digital Out 11
17	Digital Input 10	51	Digital Out 10
18	Digital Input 9	52	Digital Out 9
19	Digital Input 8	53	Digital Out 8
20	Digital Input 7	54	Digital Out 7
21	Digital Input 6	55	Digital Out 6
22	Digital Input 5	56	Digital Out 5
23	Digital Input 4	57	Digital Out 4
24	Digital Input 3	58	Digital Out 3
25	Digital Input 2	59	Digital Out 2
26	Digital Input 1	60	Digital Out 1
27	Digital Input 0	61	Digital Out 0
28	External ADC Clock	62	External ADC Trigger
29	External DAC Clock	63	External DAC Trigger
30	Digital Ground	64	Digital Ground
31	Analog Out 3	65	Analog Out 3 Return
32	Analog Out 2	66	Analog Out 2 Return
33	Analog Out 1	67	Analog Out 1 Return
34	Analog Out 0	68	Analog Out 0 Return

Table 14: Pin Assignments for Connector TB1 on the OEM Version of Module

TB1 Pin Assignment	Signal Description
1	+5 V
2	Ground
3	Shield (Chassis Ground)

BNC Connection Box Connector Pin Assignments

This section describes the pin assignments for the D-sub connectors on the BNC connection box. Note that the BNC connectors are labeled on the box.

Analog Input Connector

Figure 7 shows the orientation of the pins on the Analog Input connector on the BNC connection box.

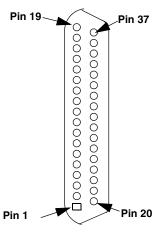


Figure 7: Orientation of the Analog Input Connector on the BNC Connection Box

Table 15 lists the pin assignments for the analog input connector on the BNC connection box.

Pin	Signal Description	Pin	Signal Description
19	No Connect	37	Digital Ground
18	+5 V Analog	36	Analog Ground
17	Amplifier Low	35	Reserved
16	Reserved	34	Reserved
15	Reserved	33	Reserved
14	Reserved	32	Reserved
13	Reserved	31	Reserved
12	Reserved	30	Reserved
11	Reserved	29	Reserved
10	Reserved	28	Reserved
9	Reserved	27	Analog Input 7 Return/ Analog In 15 ^a
8	Analog Input 7	26	Analog Input 6 Return/ Analog In 14 ^a
7	Analog Input 6	25	Analog Input 5 Return/ Analog In 13 ^a
6	Analog Input 5	24	Analog Input 4 Return/ Analog In 12 ^a
5	Analog Input 4	23	Analog Input 3 Return/ Analog In 11 ^a
4	Analog Input 3	22	Analog Input 2 Return/ Analog In 10 ^a

Table 15: BNC Connection Box Analog Input Connector Pin Assignments (cont.)

Pin	Signal Description	Pin	Signal Description
3	Analog Input 2	21	Analog Input 1 Return/ Analog In 9 ^a
2	Analog Input 1	20	Analog Input 0 Return/ Analog In 8 ^a
1	Analog Input 0		

a. Applies to the DT9834-16-0-12-BNC, DT9834-08-0-12-BNC, DT9834-16-0-16-BNC, DT9834-08-0-16-BNC, DT9834-16-4-12-BNC, and DT9834-08-4-12-BNC modules only. The first signal description (Return) applies to the differential configuration. The second signal description applies to the single-ended configuration.

Digital I/O Connector

Figure 8 shows the orientation of the pins on the Digital I/O connector on the BNC connection box.

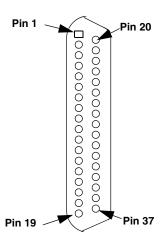


Figure 8: Orientation of the Digital I/O Connector on the BNC Connection Box

Table 16 lists the pin assignments for the digital I/O connector on the BNC connection box.

B

Table 16: BNC Connection Box Digital I/O Connector Pin Assignments

Pin	Signal Description	Pin	Signal Description
1	Digital Input 0	20	Digital Output 0
2	Digital Input 1	21	Digital Output 1
3	Digital Input 2	22	Digital Output 2
4	Digital Input 3	23	Digital Output 3
5	Digital Input 4	24	Digital Output 4
6	Digital Input 5	25	Digital Output 5
7	Digital Input 6	26	Digital Output 6
8	Digital Input 7	27	Digital Output 7
9	Digital Input 8	28	Digital Output 8
10	Digital Input 9	29	Digital Output 9
11	Digital Input 10	30	Digital Output 10
12	Digital Input 11	31	Digital Output 11
13	Digital Input 12	32	Digital Output 12
14	Digital Input 13	33	Digital Output 13
15	Digital Input 14	34	Digital Output 14
16	Digital Input 15	35	Digital Output 15
17	Digital Ground	36	Dynamic Digital Output
18	Digital Ground	37	Digital Ground
19	No Connect		

Analog Output, Counter/Timer, Clock, and Trigger Connector

Figure 8 shows the orientation of the pins on the Analog Output, Counter/Timer, Clock, and Trigger connector on the BNC connection box.

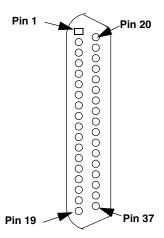


Figure 9: Orientation of the Analog Output, Counter/Timer, Clock, and Trigger Connector on the BNC Connection Box

Table 17 lists the pin assignments for the Analog output, Counter/timer, Clock, and Trigger connector on the BNC connection box.

Table 17: BNC Connection Box Analog Output, Counter/Timer, Clock, and Trigger Connector Pin Assignments

Pin	Signal Description	Pin	Signal Description
1	Analog Output 0	20	Analog Output 0 Return
2	Analog Output 1	21	Analog Output 1 Return
3	Analog Output 2	22	Analog Output 2 Return
4	Analog Output 3	23	Analog Output 3 Return
5	Digital Ground	24	Digital Ground
6	External DAC Clock	25	External DAC Trigger
7	External ADC Clock	26	External ADC Trigger
8	Counter 0 Clock	27	Digital Ground
9	Counter 0 Out	28	Counter 0 Gate
10	Counter 1 Clock	29	Digital Ground
11	Counter 1 Out	30	Counter 1 Gate
12	Counter 2 Clock	31	Digital Ground
13	Counter 2 Out	32	Counter 2 Gate
14	Counter 3 Clock	33	Digital Ground
15	Counter 3 Out	34	Counter 3 Gate
16	Counter 4 Clock	35	Digital Ground
17	Counter 4 Out	36	Counter 4 Gate
18	Digital Ground	37	Digital Ground
19	No Connect		<u> </u>

STP Connection Box Pin Assignments

This section describes the pin assignments for the screw terminals on the STP connection box. The STP connection box is used on the DT9832-32-0-16-STP module only. Note that the screw terminals are also labeled on the box.

Screw Terminal Block TB1

TB1 is used to connect analog input signals to the DT9834-32-0-16-STP module. Table 18 lists the screw terminal assignments for screw terminal block TB1.

Table 18: Screw Terminal Assignments for Terminal Block TB1

Screw Terminal	Signal Description
18	Analog Ground
17	Analog In 5 Return/Analog In 13 ^a
16	Analog In 5
15	Analog Ground
14	Analog In 4 Return/Analog In 12 ^a
13	Analog In 4
12	Analog Ground
11	Analog In 3 Return/Analog In 11
10	Analog In 3
9	Analog Ground
8	Analog In 2 Return/Analog In 10 ^a
7	Analog In 2
6	Analog Ground

Table 18: Screw Terminal Assignments for Terminal Block TB1

Screw Terminal	Signal Description		
5	Analog In 1 Return/Analog In 9 ^a		
4	Analog In 1		
3	Analog Ground		
2	Analog In 0 Return/Analog In 8 ^a		
1	Analog In 0		

a. The first signal description is for differential signals; the second signal description is for single-ended signals.

TB2 is used to connect analog input signals to the DT9834-32-0-16-STP module. Table 19 lists the screw terminal assignments for screw terminal block TB2.

Table 19: Screw Terminal Assignments for Terminal Block TB2

Screw Terminal	Signal Description		
18	Analog Ground		
17	Analog In 11 Return/Analog In 27 ^a		
16	Analog In 11/Analog In 19 ^a		
15	Analog Ground		
14	Analog In 10 Return/Analog In 26 ^a		
13	Analog In 10/Analog In 18 ^a		
12	Analog Ground		
11	Analog In 9 Return/Analog In 25 ^a		
10	Analog In 9/Analog In 17 ^a		

Table 19: Screw Terminal Assignments for Terminal Block TB2

Screw Terminal	Signal Description		
9	Analog Ground		
8	Analog In 8 Return/Analog In 24 ^a		
7	Analog In 8/Analog In 16 ^a		
6	Analog Ground		
5	Analog In 7 Return/Analog In 15 ^a		
4	Analog In 7		
3	Analog Ground		
2	Analog In 6 Return/Analog In 14 ^a		
1	Analog In 6		

a. The first signal description is for differential signals; the second signal description is for single-ended signals.

TB 3 is used to connect analog input signals to the DT9834-32-0-16-STP module. Table 20 lists the screw terminal assignments for screw terminal block TB3.

Table 20: Screw Terminal Assignments for Terminal Block TB3

Screw Terminal	Signal Description	
18	5 V Analog	
17	Digital Ground	
16	Analog Ground	
15	Analog Ground	
14	Amplifier Low	

B

Table 20: Screw Terminal Assignments for Terminal Block TB3

Screw Terminal	Signal Description	
13	Amplifier Low	
12	Analog Ground	
11	Analog In 15 Return/Analog In 31 ^a	
10	Analog In 15/Analog In 23 ^a	
9	Analog Ground	
8	Analog In 14 Return/Analog In 30 ^a	
7	Analog In 14/Analog In 22 ^a	
6	Analog Ground	
5	Analog In 13 Return/Analog In 29 ^a	
4	Analog In 13/Analog In 21 ^a	
3	Analog Ground	
2	Analog In 12 Return/Analog In 28 ^a	
1	Analog In 12/Analog In 20 ^a	

a. The first signal description is for differential signals; the second signal description is for single-ended signals.

TB4 is used for connecting the external clock and trigger signals to the DT9834-32-0-16-STP module. Table 21 lists the screw terminal assignments for screw terminal block TB4.

Screw Terminal	Signal Description	
18	Digital Ground	
17	Digital Ground	
16	External ADC Trigger	
15	Digital Ground	
14	External ADC Clock	
13	Digital Ground	
12	Not Used	
11	Not Used	
10	Not Used	
9	Not Used	
8	Not Used	
7	Not Used	
6	Not Used	
5	Not Used	
4	Not Used	
3	Not Used	
2	Not Used	
1	Not Used	

TB5 is used to connect digital inputs signals to the DT9834-32-0-16-STP module. Table 22 lists the screw terminal assignments for screw terminal block TB5.

Table 22: Screw Terminal Assignments for Terminal Block TB5

Screw Terminal	Signal Description	
18	Digital Ground	
17	Digital Input 15	
16	Digital Input 14	
15	Digital Input 13	
14	Digital Input 12	
13	Digital Input 11	
12	Digital Input 10	
11	Digital Input 9	
10	Digital Input 8	
9	Digital Ground	
8	Digital Input 7	
7	Digital Input 6	
6	Digital Input 5	
5	Digital Input 4	
4	Digital Input 3	
3	Digital Input 2	
2	Digital Input 1	
1	Digital Input 0	

TB6 is used to connect digital output signals to the DT9834-32-0-16-STP module. Table 23 lists the screw terminal assignments for screw terminal block TB6.

Table 23: Screw Terminal Assignments for Terminal Block TB6

Screw Terminal	Signal Description
20	Digital Ground
19	Dynamic Digital Output
18	Digital Ground
17	Digital Output 15
16	Digital Output 14
15	Digital Output 13
14	Digital Output 12
13	Digital Output 11
12	Digital Output 10
11	Digital Output 9
10	Digital Output 8
9	Digital Ground
8	Digital Output 7
7	Digital Output 6
6	Digital Output 5
5	Digital Output 4
4	Digital Output 3

Table 23: Screw Terminal Assignments for Terminal Block TB6

Screw Terminal	Signal Description	
3	Digital Output 2	
2	Digital Output 1	
1	Digital Output 0	

TB7 is used to connect counter/timer signals to the DT9834-32-0-16-STP module. Table 24 lists the screw terminal assignments for screw terminal block TB7.

Table 24: Screw Terminal Assignments for Terminal Block TB7

Screw Terminal	Signal Description	
20	Counter 4 Gate	
19	Counter 4 Out	
18	Counter 4 Clock	
17	Digital Ground	
16	Counter 3 Gate	
15	Counter 3 Out	
14	Counter 3 Clock	
13	Digital Ground	
12	Counter 2 Gate	
11	Counter 2 Out	
10	Counter 2 Clock	
9	Digital Ground	

Table 24: Screw Terminal Assignments for Terminal Block TB7

Screw Terminal	Signal Description	
8	Counter 1 Gate	
7	Counter 1 Out	
6	Counter 1 Clock	
5	Digital Ground	
4	Counter 0 Gate	
3	Counter 0 Out	
2	Counter 0 Clock	
1	Digital Ground	

EP353 Accessory Panel Connector Pin Assignments

This section describes the pin assignments for the connectors on the EP353 accessory panel.

Connector J1

Figure 12 shows the orientation of the pins for connector J1 on the EP353 panel.

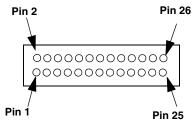


Figure 10: Orientation of the Pins for Connectors J1 on the EP353 Panel

Table 25 lists the pin assignments for connector J1 on the EP353 accessory panel.

Table 25: EP353 Connector J1 Pin Assignments

Pin	Signal Description	Pin	Signal Description
1	Analog Input 0	2	Analog Input 0 Return / Analog Input 8 ^a
3	Analog Ground	4	Analog Input 1 Return / Analog Input 9 ^a
5	Analog Input 1	6	Analog Ground
7	Analog Input 2	8	Analog Input 2 Return / Analog Input 10 ^a
9	Analog Ground	10	Analog Input 3 Return / Analog Input 11 ^a
11	Analog Input 3	12	Analog Ground
13	Analog Input 4	14	Analog Input 4 Return / Analog Input 12 ^a
15	Analog Ground	16	Analog Input 5 Return / Analog Input 13 ^a
17	Analog Input 5	18	Analog Ground
19	Analog Input 6	20	Analog Input 6 Return / Analog Input 14 ^a
21	Analog Ground	22	Analog Input 7 Return / Analog Input 15 ^a
23	Analog Input 7	24	Analog Ground
25	Amplifier Low	26	Reserved

a. The first signal description (Return) applies to the differential configuration for all modules. The second signal description applies to the single-ended configuration for all modules.

Connector J2

Figure 11 shows the orientation of the pins for connector J2 on the EP353 panel.

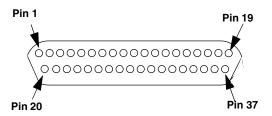


Figure 11: Orientation of the Pins for Connectors J2 on the EP353 Panel

Table 26 lists the pin assignments for connector J2 on the EP353 accessory panel.

Table 26: EP353 Connector J2 Pin Assignments

Pin	Signal Description	Pin	Signal Description
1	Analog Input 0	20	Analog Input 0 Return/ Analog In 8 ^a
2	Analog Input 1	21	Analog Input 1 Return/ Analog In 9 ^a
3	Analog Input 2	22	Analog Input 2 Return/ Analog In 10 ^a
4	Analog Input 3	23	Analog Input 3 Return/ Analog In 11 ^a
5	Analog Input 4	24	Analog Input 4 Return/ Analog In 12 ^a

Pin	Signal Description	Pin	Signal Description
6	Analog Input 5	25	Analog Input 5 Return/ Analog In 13 ^a
7	Analog Input 6	26	Analog Input 6 Return/ Analog In 14 ^a
8	Analog Input 7	27	Analog Input 7 Return/ Analog In 15 ^a
9	Analog Input 8 / Analog Input 16 ^b	28	Analog Input 8 Return / Analog In 24 ^c
10	Analog Input 9 / Analog Input 17 ^b	29	Analog Input 9 Return / Analog In 25 ^c
11	Analog Input 10 / Analog Input 18 ^b	30	Analog Input 10 Return / Analog In 26 ^c
12	Analog Input 11 / Analog Input 19 ^b	31	Analog Input 11 Return / Analog In 27 ^c
13	Analog Input 12 / Analog Input 20 ^b	32	Analog Input 12 Return / Analog In 28 ^c
14	Analog Input 13 / Analog Input 21 ^b	33	Analog Input 13 Return / Analog In 29 ^c
15	Analog Input 14 / Analog Input 22 ^b	34	Analog Input 14 Return / Analog In 30 ^c
16	Analog Input 15 / Analog Input 23 ^b	35	Analog Input 15 Return / Analog In 31 ^c
17	Amplifier Low	36	Analog Ground
18	+5 V Analog	37	Digital Ground
19	Chassis Ground		

- a. The first signal description (Return) applies to the differential configuration for all modules. The second signal description applies to the single-ended configuration for the DT9834-16-0-12-OEM, DT9834-08-0-12-OEM, DT9834-16-0-16-OEM, DT9834-08-0-16-OEM, DT9834-16-4-12-OEM, and DT9834-08-4-12-OEM modules only.
- b. These pins are used for the DT9834-32-0-16-OEM module only. The first signal description applies to the differential configuration; the second signal description applies to the single-ended configuration.
- c. These pins are used for the DT9834-32-0-16-OEM module only. The first signal description (Return) applies to the differential configuration; the second signal description applies to the single-ended configuration.

EP356 Accessory Panel Connector Pin Assignments

This section describes the pin assignments for the connectors on the EP356 accessory panel. Figure 12 shows the orientation of the pins for connectors J1 and J2 on the EP356 panel.



Figure 12: Orientation of the Pins for Connectors J1 and J2 of the EP356 Panel

Connector J1

Table 27 lists the pin assignments for connector J1 on the EP356 accessory panel.

Table 27: EP356 Connector J1 Pin Assignments

Pin	Signal Description	Pin	Signal Description
1	Digital Input 0	20	Digital Output 0
2	Digital Input 1	21	Digital Output 1
3	Digital Input 2	22	Digital Output 2
4	Digital Input 3	23	Digital Output 3
5	Digital Input 4	24	Digital Output 4
6	Digital Input 5	25	Digital Output 5
7	Digital Input 6	26	Digital Output 6
8	Digital Input 7	27	Digital Output 7
9	Digital Input 8	28	Digital Output 8
10	Digital Input 9	29	Digital Output 9
11	Digital Input 10	30	Digital Output 10
12	Digital Input 11	31	Digital Output 11
13	Digital Input 12	32	Digital Output 12
14	Digital Input 13	33	Digital Output 13
15	Digital Input 14	34	Digital Output 14
16	Digital Input 15	35	Digital Output 15
17	Digital Ground	36	Dynamic Digital Output
18	Digital Ground	37	Digital Ground
19	Chassis Ground		

Connector J2

Table 28 lists the pin assignments for connector J2 on the EP356 accessory panel.

Table 28: EP356 Connector J2 Pin Assignments

Pin	Signal Description	Pin	Signal Description
1	Analog Output 0	20	Analog Output 0 Return
2	Analog Output 1	21	Analog Output 1 Return
3	Analog Output 2	22	Analog Output 2 Return
4	Analog Output 3	23	Analog Output 3 Return
5	Digital Ground	24	Digital Ground
6	External DAC Clock	25	External DAC Trigger
7	External ADC Clock	26	External ADC Trigger
8	Counter 0 Clock	27	Digital Ground
9	Counter 0 Out	28	Counter 0 Gate
10	Counter 1 Clock	29	Digital Ground
11	Counter 1 Out	30	Counter 1 Gate
12	Counter 2 Clock	31	Digital Ground
13	Counter 2 Out	32	Counter 2 Gate
14	Counter 3 Clock	33	Digital Ground
15	Counter 3 Out	34	Counter 3 Gate
16	Counter 4 Clock	35	Digital Ground
17	Counter 4 Out	36	Counter 4 Gate
18	Digital Ground	37	Digital Ground
19	Chassis Ground		<u>, </u>

EP355 Screw Terminal Assignments

The EP355 screw terminal panel is used with the OEM version of the DT9834 Series module. The screw terminal assignments depend on whether the EP355 is attached to connector J2 or connector J3 on the OEM module.

B

Attached to Connector J2 on the OEM Module

The screw terminal assignments correspond to the pin assignments on the J2 connector on the OEM version of the DT9834 Series module itself. Refer to Table 12 on page 146, using the pin numbers to reference the screw terminals on the EP355.

Attached to Connector J3 on the OEM Module

The screw terminal assignments correspond to the pin assignments on the J3 connector on the OEM version of the DT9834 Series module itself. Refer to Table 13 on page 149, using the pin numbers to reference the screw terminals on the EP355.

Index

Numerics	triggers 40
5B01 backplane 22	analog output
5B08 backplane 22	calibrating 131
oboo buckplane 22	channel list 45
_	channels 45
\boldsymbol{A}	clock sources 47
A/D Over Sample error 43	continuous operations 48
A/D subsystem specifications 134	conversion modes 48
aborting an operation 115	data format and transfer 51
AC1315 cable 22	error conditions 52
accessories 21	gain 47
aliasing 35	ranges 47
analog input	resolution 44
calibrating 128	single-value operations 48
channel-gain list for analog input	subsystem specifications 137
channels 27	analog threshold trigger 41
channel-gain list for counter/timers	applet, Open Layers Control Panel 27, 54, 82, 121
channel-gain list for digital input	applications
port 29	DT Measure Foundry 20
channels 26	DT-LV Link 21
continuous operations 36	Quick Data Acq 20
conversion modes 35	
data format and transfer 41	В
differential configuration 26	_
error conditions 43	base clock frequency 79
gain 33	binary data encoding 82
pseudo-differential configuration 26	BNC connection box connector pin
ranges 33	assignments 152, 159 buffers 72, 108, 109
resolution 25	cleaning up 116
sample clock sources 34	dealing with for A/D operations 110
single-ended configuration 26	dealing with for D/A operations 113
single-ended operations 35	acaming with for D/11 operations 110

inprocess flush 72	number of 76
multiple wrap mode 72, 108, 109	setting up parameters for 105
setting up for A/D operations 108	cleaning up an operation 116
setting up for D/A operations 109	clock divider 93, 95, 97, 101
single wrap mode 72, 108, 109	clock sources
transferring from inprocess 112	analog input 34
waveform generation mode 72	analog output 47
<u> </u>	counter/timer 57
	clocks
C	base frequency 79
C/C++ programs 20	clock divider 93, 95, 97, 101
C/T, see counter/timer 140	external 79, 106
cables, AC1315 22	frequency 106
calibrating the module	internal 79, 93, 95, 97, 99, 101, 106
analog input subsystem 128	maximum external clock divider 79
analog output subsystem 131	maximum throughput 79
running the calibration utility 127	minimum external clock divider 79
calibration 82	minimum throughput 79
CGL, see channel-gain list 75	number of extra 79
channel type	setting parameters for analog input
differential 76	operations 106
single-ended 76	simultaneous 79
channel-gain list 105	specifications 142
depth 75	connector J2 pin assignments
for analog input channels 27	OEM version 146
for counter/timers 30	connector J3 pin assignments, OEM
for digital input port 29	version 146
inhibiting 75, 105	connector pin assignments
random 75	BNC connection box 152, 159
sequential 75	EP353 168
zero start 75	EP356 172, 173
channel-inhibit list 28	connector TB1 pin assignments, OEM
channels	version 146
analog input 26	continuous analog input
analog output 45	externally retriggered scan mode 39
counter/timer 55	how to perform 87
digital I/O 53	internally retriggered scan mode 38

post-trigger 71	quadrature decoder 81
pre-trigger 71	rate generation mode 80
scan operations 36	repetitive one-shot mode 80
continuous analog output 71	subsystem specifications 140
continuously paced 48	up/down counting 80
how to perform 89	counting events 60, 61
waveform generation mode 50	customer service 123
continuous counter/timer 71	
continuous digital I/O 54, 71	D
how to perform digital input 91	D
how to perform digital output 92	D/A, see analog output 137
Control Panel applet 27, 54, 82, 121	DAC Over Sample error 52
conversion modes	data encoding 41, 51, 82
continuous analog output 48	data flow modes
continuous scan mode 36	continuous analog input operations
digital I/O 54	87
externally retriggered scan 39	continuous analog output operations
internally retriggered scan 38	89
scan 36	continuous C/T 71
single-value analog input 35	continuous digital input 71
single-value analog output 48	continuous post-trigger 71
conversion rate 36, 38, 39	continuous pre-trigger 71
counter/timer	single-value 71
channels 55, 76	single-value operations 85
clock sources 57, 79	data format and transfer
edge-to-edge measurement mode 80	analog input 41
event counting 80	analog output 51
gate types 58	data processing 82
high-edge gate type 80	DataAcq SDK 20
high-level gate type 80	device driver 20
high-to-low output pulse 80	differential channels 26, 76
in analog input channel-gain list 30	digital I/O 53
internal gate type 80	lines 53
low-edge gate type 81	operation modes 54
low-level gate type 80	subsystem specifications 139
low-to-high output pulse 80	synchronous 105
one-shot mode 80	digital input port 54

in analog input channel-gain list 29	extra retrigger 74
digital output line, dynamic 32, 55	
digital output port 54	_
in output channel list 45	F
digital trigger 41, 47	factory service 123
DT Measure Foundry 20	features 16
DT9834 Series Device Driver 20	formatting data
DT-LV Link 21	analog input 41
DTx-EZ 20	analog output 51
duty cycle 59	frequency
dynamic digital output 32, 55	base clock 79
	external A/D clock 35
_	external C/T clock 57
E	external DAC clock 48
edge-to-edge measurement mode 63,	internal A/D clock 34, 79, 106
80	internal A/D sample clock 79
encoding data 41, 51	internal C/T clock 57, 79
environmental specifications 143	internal DAC clock 47
EP353 accessory panel connector pin	internal retrigger clock 74
assignments 168	output pulse 63
EP355 screw terminal assignments 175	retrigger 107
EP356 accessory panel connector pin	frequency measurement 61
assignments 172, 173	how to perform 97
errors	
analog input 43, 110	C
analog output 52, 113	G
over sample 43, 52	gain
overflow 43	analog input 33
underflow 52	analog output 47
event counting 60, 80	number of 75
how to perform 93, 95, 99	gap-free data 73
external clock 57, 79, 106	gate type 58, 93, 101
external clock divider	high-edge 80
maximum 79	high-level 80
minimum 79	internal 80
external digital trigger 41, 47, 78	low-edge 81
externally retriggered scan mode 39	low-level 80

generating pulses 64, 65, 66	L
H hardware features 16 high-edge gate type 80 high-level gate type 80	LabVIEW 21 lines, digital I/O 53 LongtoFreq macro 98 low-edge gate type 81 low-level gate type 80
1	M
inhibiting channel-gain list 105 inprocess buffers 72, 112 input channels 26 ranges 33 resolution 25 sample clock sources 34 input configuration differential analog 26 pseudo-differential analog 26 single-ended analog 26 Input FIFO Overflow error 43 internal	macro 98 measuring frequency 61 measuring pulses 63 messages dealing with for A/D operations 110 dealing with for D/A operations 113 error 110, 113 multiple buffer wrap mode 72, 108, 109 multiple channels analog input 27 analog output 45
clock 57, 79, 93, 95, 97, 99, 101, 106 gate type 80 retrigger 74 internally retriggered scan mode 38 interrupt-on-change operations 54 interrupts 82 J J2 connector pin assignments OEM version 146 J3 connector pin assignments OEM version 146	number of differential channels 76 DMA channels 73 extra clocks 79 extra triggers 78 filters 77 gains 75 I/O channels 76 resolutions 77 scans per trigger 74 single-ended channels 76 voltage ranges 77 Nyquist Theorem 35

0	in frequency measurement
OEM version	operations 97 in pulse output operations 101
connector J2 pin assignments 146	in single-value operations 85
connector J3 pin assignments 146	olDaGetQueueSize 112, 116
connector TB1 pin assignments 146	olDaGetSingleValue 86
OLDA_WM_BUFFER_ DONE 112	olDaGetSSCaps 70
OLDA_WM_BUFFER_DONE 111, 114	olDaGetSSCapsEx 70
OLDA_WM_BUFFER_REUSED 110,	olDaGetSSList 103
113	olDaInitialize
OLDA_WM_IO_COMPLETE 114	in continuous A/D operations 87
OLDA_WM_OVERRUN 110	in continuous D/A operations 89, 91.
OLDA_WM_QUEUE_DONE 110, 113	92
OLDA_WM_QUEUE_STOPPED 110,	in event counting operations 93, 95,
113	99
OLDA_WM_TRIGGER_ERROR 110,	in frequency measurement
113	operations 97
OLDA_WM_UNDERRUN 113	in pulse output operations 101
olDaAbort 115	in single-value operations 85
olDaConfig	olDaMeasureFrequency 98
in continuous A/D operations 88	olDaPutBuffer 108, 109, 111, 114
in continuous D/A operations 90, 91,	olDaPutDassToSSList 103
92	olDaPutSingleValue 86, 106
in event counting operations 93, 95,	olDaReadEvents 94, 96
99	olDaReleaseDASS
in frequency measurement	in continuous A/D operations 116
operations 98	in continuous D/A operations 116
in pulse output operations 102	in event counting operations 94, 96,
in single-value operations 85	100
olDaFlushBuffers 116	in frequency measurement
olDaFlushFromBufferInprocess 112	operations 98
olDaGetBuffer 111, 114, 116	in pulse output operations 102
olDaGetDASS	in single-value operations 86
in continuous A/D operations 87	olDaReleaseSSList 116
in continuous D/A operations $89, 91,$	olDaReset 115
92	olDaSetChannelListEntry 105
in event counting operations 93, 95,	olDaSetChannelListEntryInhibit 105
99	

olDaSetChannelListSize 105	olDaStart
olDaSetClockFrequency 106	in continuous A/D operations 88
olDaSetClockSource 93, 95, 97, 99,	in continuous D/A operations 90, 91,
101, 106	92
olDaSetCTMode	in event counting operations 94, 96,
in event counting operations 93, 95,	100
99	in pulse output operations 102
in frequency measurement	olDaStop 115
operations 97	olDaTerminate
in pulse output operations 102	in continuous A/D operations 116
olDaSetDataFlow	in continuous D/A operations 116
in continuous A/D operations 87	in event counting operations 94, 96,
in continuous D/A operations 89	100
in single-value operations 85	in frequency measurement
olDaSetDigitalIOListEntry 105	operations 98
olDaSetExternalClockDivider 93, 95,	in pulse output operations 102
97, 101	in single-value operations 86
olDaSetGainListEntry 105	olDmAllocBuffer 108, 109, 112
olDaSetGateType 93, 101	olDmCallocBuffer 112
olDaSetMeasureStartEdge 99	olDmCopyFromBuffer 111
olDaSetMeasureStopEdge 99	olDmCopyToBuffer 114
olDaSetMultiscanCount 107	olDmFreeBuffer 116
olDaSetPulseType 102	olDmGetValidSamples 111
olDaSetPulseWidth 102	olDmMallocBuffer 112
olDaSetRange, in single-value	olDmSetValidSamples 109
operations 85	OLSSC_CGLDEPTH 75
olDaSetRetrigger 107	OLSSC_FIFO_SIZE_IN_K 82
olDaSetRetriggerFrequency 107	OLSSC_MAX_DIGITALIOLIST_VAL
olDaSetRetriggerMode 107	UE 76
olDaSetSynchronousDigitalIOUsage	OLSSC_MAXDICHANS 76
105	OLSSC_MAXMULTISCAN 74
olDaSetTrigger 106	OLSSC_MAXSECHANS 76
olDaSetTriggeredScanUsage 107	OLSSC_NUMCHANNELS 76
olDaSetWndHandle 108, 109	OLSSC_NUMDMACHANS 73
olDaSetWrapMode 108, 109	OLSSC_NUMEXTRACLOCKS 79
olDaSimultaneousPreStart 103	OLSSC_NUMEXTRATRIGGERS 78
olDaSimultaneousStart 103	OLSSC_NUMFILTERS 77

OLSSC_NUMGAINS 75	OLSSC_SUP_RANDOM_CGL 75
OLSSC_NUMRANGES 77	OLSSC_SUP_RETRIGGER_EXTRA 74
OLSSC_NUMRESOLUTIONS 77	OLSSC_SUP_RETRIGGER_INTERNA
OLSSC_SUP_BINARY 82	L 74
OLSSC_SUP_BUFFERING 72	OLSSC_SUP_RETRIGGER_SCAN_
OLSSC_SUP_CHANNELLIST_	PER_TRIGGER 74
INHIBIT 75	OLSSC_SUP_SEQUENTIAL_CGL 75
OLSSC_SUP_CONTINUOUS 71	OLSSC_SUP_SIMULTANEOUS_CLO
OLSSC_SUP_CONTINUOUS_PRETRI	CKING 79
G 71	OLSSC_SUP_SIMULTANEOUS_STA
OLSSC_SUP_CTMODE_COUNT 80	RT 82
OLSSC_SUP_CTMODE_MEASURE	OLSSC_SUP_SINGLEENDED 76
80	OLSSC_SUP_SINGLEVALUE 71
OLSSC_SUP_CTMODE_ONESHOT	OLSSC_SUP_SOFTTRIG 78
80	OLSSC_SUP_SWCAL 82
OLSSC_SUP_CTMODE_ONESHOT_	OLSSC_SUP_SYNCHRONOUS_
RPT 80	DIGITALIO 76
OLSSC_SUP_CTMODE_RATE 80	OLSSC_SUP_THRESHTRIGPOS 78
OLSSC_SUP_CTMODE_UP_DOWN	OLSSC_SUP_TRIGSCAN 74
80	OLSSC_SUP_WRPMULTIPLE 72
OLSSC_SUP_DIFFERENTIAL 76	OLSSC_SUP_WRPSINGLE 72
OLSSC_SUP_EXTCLOCK 79	OLSSC_SUP_ZEROSEQUENTIAL_C
OLSSC_SUP_EXTERNTRIG 78	GL 75
OLSSC_SUP_GAPFREE_NODMA 73	OLSSCE_BASECLOCK 79
OLSSC_SUP_GATE_HIGH_EDGE 80	OLSSCE_MAX_THROUGHPUT 79
OLSSC_SUP_GATE_HIGH_LEVEL 80	OLSSCE_MAXCLOCKDIVIDER 79
OLSSC_SUP_GATE_LOW_EDGE 81	OLSSCE_MAXRETRIGGER 74
OLSSC_SUP_GATE_LOW_LEVEL 80	OLSSCE_MIN_THROUGHPUT 79
OLSSC_SUP_GATE_NONE 80	OLSSCE_MINCLOCKDIVIDER 79
OLSSC_SUP_INPROCESSFLUSH 72	OLSSCE_MINRETRIGGER 74
OLSSC_SUP_INTCLOCK 79	one-shot pulse output 65, 80
OLSSC_SUP_INTERRUPT 82	Open Layers Control Panel applet 27,
OLSSC_SUP_PLS_HIGH2LOW 80	54, 82, 121
OLSSC_SUP_PLS_LOW2HIGH 80	operation modes
OLSSC_SUP_POSTMESSAGE 82	continuous digital I/O 54
OLSSC_SUP_PROCESSOR 82	continuous scan 36
OLSSC_SUP_PROGRAMGAIN 75	externally retriggered scan 39

internally retriggered scan 38 single-value analog input 35	pulse width 59, 63
single-value analog output 48	
0 1	\boldsymbol{Q}
single-value digital I/O 54 triggered scan 37	quadrature decoder 81
	Quick Data Acq application 20
waveform generation 50	Quick Data req application 20
output channel list 45	_
	R
clock sources 47	random channel-gain list 75
pulses 80	ranges
ranges 47	analog input 33
Output FIFO Underflow error 52	analog output 47
outputting pulses 64, 65, 66	number of 77
over sample error 43, 52	
overflow error 43	rate generation 64, 80 repetitive one-shot pulse output 66, 80
P	resetting an operation 115 resolution
•	
period 63	analog input 25
physical specifications 143	analog output 44
pin assignments	number of 77
OEM version connector J2 146	retrigger clock frequency 74, 107
OEM version connector J3 146	retriggered scan mode 38, 39, 107
OEM version connector TB1 146	returning boards to the factory 123
ports, digital I/O 53	RMA 123
positive threshold trigger 78	
post-trigger acquisition mode 71	S
power specifications 143	•
pre-trigger acquisition mode 71	sample clock sources 34
programmable gain 75	sample rate 36, 38
pseudo-differential inputs 26	scan mode
pulse output	externally retriggered 39
how to perform 101	internally retriggered 38
one-shot 65	scan operations, analog input 36
rate generation 64	scan per trigger 74
repetitive one-shot 66	screw terminal assignments, EP355 175
types 59	SDK 20

sequential channel-gain list 75 service and support procedure 122 signal conditioning backplanes 5B01 22 5B08 22 simultaneous clocking 79 simultaneous start list 82 single buffer wrap mode 72, 108, 109 single channel analog input 27 analog output 45 single-ended channels 26, 76 number of 76 single-value operations 71, 85 analog input 35 analog output 48 digital I/O 54 how to perform 85 software packages 20, 21 software trigger 41, 47, 78 specifications 133 analog input 134 analog output 137 clocks 142 counter/timer specifications 140 digital I/O 139 environmental 143 physical 143 power 143 triggers 141 stopping an operation 36, 49, 115 synchronous digital I/O 76, 105 maximum value 76	TB1 connector pin assignments OEM version 146 technical support 122 threshold trigger 78 throughput maximum 79
	minimum 79 transferring data analog input 41 analog output 51 triggered scan 37, 74, 107 extra retrigger 74 internal retrigger 74 number of scans per trigger 74 retrigger frequency 74 scan per trigger 74 setting up 107 triggers 106, 107 analog input 40 analog threshold 41, 78 external 41, 47, 78 number of extra 78 setting parameters for 106 software 41, 47, 78 specifications 141

V

```
Visual Basic programs 20
Visual C++ programs 20
voltage ranges 33
number of 77
```

W

```
waveform generation mode 50 wrap mode 108, 109 analog input 42 analog output 51 writing programs in C/C++ 20 in Visual Basic 20 in Visual C++ 20
```

Z

zero start sequential channel-gain list 75